Matches in SemOpenAlex for { <https://semopenalex.org/work/W2094188979> ?p ?o ?g. }
- W2094188979 endingPage "927" @default.
- W2094188979 startingPage "921" @default.
- W2094188979 abstract "The role of the Y chromosome in oncogenesis of human cancers has been somewhat controversial. Both gain and loss of the Y chromosome in different leukemia, lymphoma, and solid tumors have been reported (Abeliovich et al. Abeliovich et al., 1994Abeliovich D Yehuda O Ben-Neriah S Or R Loss of Y chromosome: an age-related event or a cytogenetic marker of a malignant clone?.Cancer Genet Cytogenet. 1994; 76: 70-71Abstract Full Text PDF PubMed Scopus (17) Google Scholar; Brothman Brothman, 1997Brothman AR Cytogenetic studies in prostate cancer: are we making progress?.Cancer Genet Cytogenet. 1997; 95: 116-121Abstract Full Text PDF PubMed Scopus (31) Google Scholar; Dave et al. Dave et al., 1996Dave BJ Hopwood VL Spitz MR Pathak S Sex chromosome abnormalities in lung cancer patients.Cancer Genet Cytogenet. 1996; 87: 24-28Abstract Full Text PDF PubMed Scopus (8) Google Scholar; Geburek et al. Geburek et al., 1997Geburek BM Kollmorgen TA Qian J D'Souza-Gburek SM Lieber MM Jenkins RB Chromosomal anomalies in stage D1 prostate adenocarcinoma primary tumors and lymph node metastases detected by fluorescence in situ hybridization.J Urol. 1997; 157: 223-227Abstract Full Text Full Text PDF PubMed Scopus (42) Google Scholar; Jackson-Cook et al. Jackson-Cook et al., 1996Jackson-Cook C Bae V Edelman W Brothman A Ware J Cytogenetic characterization of the human prostate cancer cell line P69SV40T and its novel tumorigenic sublines M2182 and M15.Cancer Genet Cytogenet. 1996; 87: 14-23Abstract Full Text PDF PubMed Scopus (43) Google Scholar; Kirk et al. Kirk et al., 1994Kirk JA VanDevanter DR Biberman J Bryant EM Y chromosome loss in chronic myeloid leukemia detected in both normal and malignant cells by interphase fluorescence in situ hybridization.Genes Chromosomes Cancer. 1994; 11: 141-145Crossref PubMed Scopus (21) Google Scholar; Konig et al. Konig et al., 1994Konig JJ Teubel W van Dongen JW Romijn JC Hagemeijer A Schroder FH Loss and gain of chromosomes 1, 18, and Y in prostate cancer.Prostate. 1994; 25: 281-291Crossref PubMed Scopus (31) Google Scholar; Mertens et al. Mertens et al., 1997Mertens F Johansson B Hoglund M Mitelman F Chromosomal imbalance maps of malignant solid tumors: a cytogenetic survey of 3185 neoplasms.Cancer Res. 1997; 57: 2765-2780PubMed Google Scholar; Riske et al. Riske et al., 1994Riske CB Morgan R Ondreyco S Sandberg AA X and Y chromosome loss as sole abnormality in acute non-lymphocytic leukemia (ANLL) [published erratum appears in Cancer Genet Cytogenet 1994 Sep;76(2):161].Cancer Genet Cytogenet. 1994; 72: 44-47Abstract Full Text PDF PubMed Scopus (30) Google Scholar; Watanabe et al. Watanabe et al., 1996Watanabe A Kawachi Y Nishihara T Uchida T Setsu K Hikiji K Extra Y chromosome in T-cell acute lymphoblastic leukemia.Cancer Genet Cytogenet. 1996; 89: 85-87Abstract Full Text PDF PubMed Scopus (6) Google Scholar). Conceivably, both oncogenes and tumor-suppressor genes exist on this chromosome, and they may act at different points during tumorigenesis, particularly for cancers of male-specific organs, such as the testis and the prostate. One scenario suggests that aberrant expression of an oncogene favoring cell proliferation may activate the early stages of tumorigenesis. These early events may be mediated by the duplication of all or part of the Y chromosome. The loss or repression of a tumor-suppressor gene may be essential for the tumor to acquire aggressive properties at later stages of cancer progression, possibly triggered by the loss of the Y chromosome. Unfortunately, most studies that have tried to define the role of the Y chromosomal loci in human cancers have relied on purely cytogenetic techniques—either classical or molecular. Many genomewide linkage studies have excluded the Y chromosome from their analyses (Cooney et al. Cooney et al., 1997Cooney KA McCarthy JD Lange E Huang L Miesfeldt S Montie JE Oesterling JE et al.Prostate cancer susceptibility locus on chromosome 1q: a confirmatory study.J Natl Cancer Inst. 1997; 89: 955-959Crossref PubMed Scopus (162) Google Scholar; Dunsmuir et al. Dunsmuir et al., 1998Dunsmuir WD Edwards SM Lakhani SR Young M Corbishley C Kirby RS Dearnaley DP et al.Allelic imbalance in familial and sporadic prostate cancer at the putative human prostate cancer susceptibility locus, HPC1. CRC/BPG UK Familial Prostate Cancer Study Collaborators. Cancer Research Campaign/British Prostate Group.Br J Cancer. 1998; 78: 1430-1433Crossref PubMed Scopus (22) Google Scholar; Murray et al. Murray et al., 1994Murray JC Buetow KH Weber JL Ludwigsen S Scherpbier-Heddema T Manion F Quillen J et al.A comprehensive human linkage map with centimorgan density; Cooperative Human Linkage Center (CHLC).Science. 1994; 265: 2049-2054Crossref PubMed Scopus (497) Google Scholar; Xu et al. Xu et al., 1998Xu J Meyers D Freije D Isaacs S Wiley K Nusskern D Ewing C et al.Evidence for a prostate cancer susceptibility locus on the X chromosome.Nat Genet. 1998; 20: 175-179Crossref PubMed Scopus (371) Google Scholar), since the bulk of the Y chromosome neither pairs with, nor recombines with, the X chromosome during meiosis. Hence, identification of oncogenic and tumor-suppressor loci on this chromosome has been lacking. Despite these difficulties, one cancer predisposition locus has been assigned to this chromosome—namely, the gonadoblastoma locus on the Y chromosome (GBY). Recent progress in positional cloning of Y-linked genes has provided a pool of candidate genes for gonadoblastoma. The 33 functional genes that are currently recognized on this chromosome (fig. 1) may be divided into three distinct groups. The first group consists of X-Y identical genes that are located on one of the two pseudoautosomal regions (PARs). PAR1 is situated on the telomere of the short arm and contains ∼2.6 Mb of DNA. It harbors 10 genes that act in numerous pathways, including bone growth, cytokine signaling, cellular energy metabolism, melatonin synthesis, and cell surface antigen expression. PAR2, situated on the telomere of the long arm, contains 400 kb of DNA and includes two genes that encode an interleukin receptor and a synaptobrevin-like protein. Each gene in the PARs corresponds to an identical gene in the PARs of the X chromosome. A second group consist of X-Y homologous—but not identical—genes that are located on the nonrecombining region on the short and long arms of the Y chromosome. There are 10 single-copy genes in this group, most of which are ubiquitously expressed in many human tissues, including those of the testis and the prostate. It is still uncertain whether these X- and Y-homologous genes are functionally interchangeable. The third group includes 11 genes on the nonrecombining region. Except for the sex-determining region Y (SRY), all these genes are repeated on the Y chromosome. Some are candidates for the azoospermia factor (AZF; see McElreavey and Krausz (McElreavey and Krausz, 1999McElreavey K Krausz C Male infertility and the Y chromosome.Am J Hum Genet. 1999; 64 (in this issue): 928-933Abstract Full Text Full Text PDF PubMed Scopus (80) Google Scholar) [in this issue]). Exact functions for most of the genes on the nonrecombining region of the Y chromosome are still uncertain. Those that encode cytokine receptors, transcription factors, protein kinase, and phosphatase may influence cell proliferation and/or signal transduction and are good candidates for further studies on their probable involvement in oncogenesis of human and/or male-specific cancers. Gonadoblastomas are gonadal neoplasms that consist of aggregates of germ cells and sex cord elements (Scully Scully, 1953Scully R Gonadoblastoma: a gonadal tumor related to the dysgerminoma (seminoma) and capable of sex-hormone production.Cancer. 1953; 6: 445-463Crossref Scopus (171) Google Scholar, Scully, 1970Scully R Gonadoblastoma: a review of 74 cases.Cancer. 1970; 25: 1340-1356Crossref PubMed Scopus (524) Google Scholar). Although such tumors are rarely, if ever, found in normal males or females, in 46,XY testicular feminization (Tfm) patients, or in 47,XXY or 46,XX males (all of whose testes are devoid of germ cells), gonadoblastomas develop in >30% of phenotypic females who harbor some Y-chromosomal materials in their genome (Verp and Simpson Verp and Simpson, 1987Verp MS Simpson JL Abnormal sexual differentiation and neoplasia.Cancer Genet Cytogenet. 1987; 25: 191-218Abstract Full Text PDF PubMed Scopus (307) Google Scholar; Sultana et al. Sultana et al., 1995Sultana R Myerson D Disteche CM In situ hybridization analysis of the Y chromosome in gonadoblastoma.Genes Chromosomes Cancer. 1995; 13: 257-262Crossref PubMed Scopus (31) Google Scholar; Iezzoni et al. Iezzoni et al., 1997Iezzoni JC Von Kap-Herr C Golden WL Gaffey MJ Gonadoblastomas in 45,X/46,XY mosaicism: analysis of Y chromosome distribution by fluorescence in situ hybridization.Am J Clin Pathol. 1997; 108: 197-201PubMed Google Scholar). On the basis of these observations, Page (Page, 1987Page DC Hypothesis: a Y-chromosomal gene causes gonadoblastoma in dysgenetic gonads.Development. 1987; 101: 151-155PubMed Google Scholar) postulated the existence of a GBY locus, on the Y chromosome, that predisposes the dysgenetic gonads of XY sex-reversed females to develop gonadoblastoma. Page further hypothesized that GBY acts as an oncogene only in the dysgenetic gonad and has a normal function in the testis. Since gonadoblastomas recapitulate germ cell/support cell architecture, Page suggested that GBY might well function in or prior to spermatogenesis of the normal testis. The mapping of the underlying gene for this condition has proved unexpectedly complex. Using a panel of DNAs from sex-reversed and gonadoblastoma patients, Page had initially mapped the GBY locus to deletion intervals 3 on the short arm and 4B–7 on the long arm of this chromosome (fig. 1; also see Page Page, 1987Page DC Hypothesis: a Y-chromosomal gene causes gonadoblastoma in dysgenetic gonads.Development. 1987; 101: 151-155PubMed Google Scholar). Subsequent studies by Tsuchiya et al. (Tsuchiya et al., 1995Tsuchiya K Reijo R Page DC Disteche CM Gonadoblastoma: molecular definition of the susceptibility region on the Y chromosome.Am J Hum Genet. 1995; 57: 1400-1407PubMed Google Scholar) further sublocalized the GBY locus to a small region at intervals 3E–3G proximal to and 4B at the centromere. These investigators estimated the GBY critical region to be ∼1–2 Mb on the short arm of the human Y chromosome (fig. 1, dotted area on Yp). Salo et al. (Salo et al., 1995Salo P Kaariainen H Petrovic V Peltomaki P Page DC de la Chapelle A Molecular mapping of the putative gonadoblastoma locus on the Y chromosome.Genes Chromosomes Cancer. 1995; 14: 210-214Crossref PubMed Scopus (101) Google Scholar), however, mapped the GBY locus within 4 Mb of DNA between intervals 4B at and 5E proximal to the centromere on the long arm of the Y chromosome. These various findings led Tsuchiya et al. (Tsuchiya et al., 1995Tsuchiya K Reijo R Page DC Disteche CM Gonadoblastoma: molecular definition of the susceptibility region on the Y chromosome.Am J Hum Genet. 1995; 57: 1400-1407PubMed Google Scholar) to speculate that more than one gene may be implicated in gonadoblastoma, and it is also possible that some relevant gene is present in multiple copies that are distributed across the Y chromosome. However, it remains uncertain whether the discrepancy between regions for GBY sublocalized by the two groups arose because of inversion polymorphisms on the Y chromosome (Vogt et al. Vogt et al., 1997Vogt PH Affara N Davey P Hammer M Jobling MA Lau YF Mitchell M et al.Report of the Third International Workshop on Y Chromosome Mapping 1997. Heidelberg, Germany, April 13-16, 1997.Cytogenet Cell Genet. 1997; 79: 1-20Crossref PubMed Google Scholar). Despite the elusive location of GBY, the isolation of many of the Y chromosome genes (Lahn and Page Lahn and Page, 1997Lahn BT Page DC Functional coherence of the human Y chromosome.Science. 1997; 278: 675-680Crossref PubMed Scopus (686) Google Scholar; Vogt et al. Vogt et al., 1997Vogt PH Affara N Davey P Hammer M Jobling MA Lau YF Mitchell M et al.Report of the Third International Workshop on Y Chromosome Mapping 1997. Heidelberg, Germany, April 13-16, 1997.Cytogenet Cell Genet. 1997; 79: 1-20Crossref PubMed Google Scholar) has provided a pool of candidates for GBY. The small region defined by Tsuchiya et al. (Tsuchiya et al., 1995Tsuchiya K Reijo R Page DC Disteche CM Gonadoblastoma: molecular definition of the susceptibility region on the Y chromosome.Am J Hum Genet. 1995; 57: 1400-1407PubMed Google Scholar) contains seven known genes: amelogenin Y (AMELY), RNA binding motif (RBM), protein kinase Y (PRKY), protein tyrosine phosphatase (PTP)-BL related Y (PRY), testis transcripts Y1 and Y2 (TTY1 and TTY2), and testis-specific protein Y-encoded (TSPY). Both TTY1 and TTY2 consist of repetitive DNA sequences, and their transcripts lack any apparent protein-coding sequences (Lahn and Page Lahn and Page, 1997Lahn BT Page DC Functional coherence of the human Y chromosome.Science. 1997; 278: 675-680Crossref PubMed Scopus (686) Google Scholar), so these genes may serve no crucial function. AMELY, like its X-linked homologue, AMELX, encodes an enamel protein (Lau et al. Lau et al., 1989Lau EC Mohandas TK Shapiro LJ Slavkin HC Snead ML Human and mouse amelogenin gene loci are on the sex chromosomes.Genomics. 1989; 4: 162-168Crossref PubMed Scopus (245) Google Scholar) that is exclusively expressed in the developing tooth bud (Salido et al. Salido et al., 1992Salido EC Yen PH Koprivnikar K Yu L-C Shapiro LJ The human enamel protein gene amelogenin is expressed from both the X and the Y chromosomes.Am J Hum Genet. 1992; 50: 303-316PubMed Google Scholar). Hence, neither of these gene products is likely to affect cell proliferation in the gonad. RBM is a repeated gene with functional sequences that are mostly located in interval 6 on the long arm (Ma et al. Ma et al., 1993Ma K Inglis JD Sharkey A Bickmore WA Hill RE Prosser EJ Speed RM et al.A Y chromosome gene family with RNA-binding protein homology: candidates for the azoospermia factor AZF controlling human spermatogenesis.Cell. 1993; 75: 1287-1295Abstract Full Text PDF PubMed Scopus (478) Google Scholar). Only a few copies are located within the GBY critical region. The RBM protein contains an RNA-binding motif, from which it derives its name, and it localizes primarily to the nuclei of spermatogenic cells (Elliott et al. Elliott et al., 1997Elliott DJ Millar MR Oghene K Ross A Kiesewetter F Pryor J McIntyre M et al.Expression of RBM in the nuclei of human germ cells is dependent on a critical region of the Y chromosome long arm.Proc Natl Acad Sci USA. 1997; 94: 3848-3853Crossref PubMed Scopus (228) Google Scholar). As discussed by McElreavey and Krausz (McElreavey and Krausz, 1999McElreavey K Krausz C Male infertility and the Y chromosome.Am J Hum Genet. 1999; 64 (in this issue): 928-933Abstract Full Text Full Text PDF PubMed Scopus (80) Google Scholar), RBM is postulated to act in the nuclear metabolism of newly synthesized RNA (Elliott et al. Elliott et al., 1998Elliott DJ Oghene K Makarov G Makarova O Hargreave TB Chandley AC Eperon IC et al.Dynamic changes in the subnuclear organisation of pre-mRNA splicing proteins and RBM during human germ cell development.J Cell Sci. 1998; 111: 1255-1265PubMed Google Scholar) and may underlie the azoospermia defect that has been mapped to interval 6 (Ma et al. Ma et al., 1993Ma K Inglis JD Sharkey A Bickmore WA Hill RE Prosser EJ Speed RM et al.A Y chromosome gene family with RNA-binding protein homology: candidates for the azoospermia factor AZF controlling human spermatogenesis.Cell. 1993; 75: 1287-1295Abstract Full Text PDF PubMed Scopus (478) Google Scholar; Vogt et al. Vogt et al., 1997Vogt PH Affara N Davey P Hammer M Jobling MA Lau YF Mitchell M et al.Report of the Third International Workshop on Y Chromosome Mapping 1997. Heidelberg, Germany, April 13-16, 1997.Cytogenet Cell Genet. 1997; 79: 1-20Crossref PubMed Google Scholar). Although its transcripts have been detected in gonadoblastoma tissues (Tsuchiya et al. Tsuchiya et al., 1995Tsuchiya K Reijo R Page DC Disteche CM Gonadoblastoma: molecular definition of the susceptibility region on the Y chromosome.Am J Hum Genet. 1995; 57: 1400-1407PubMed Google Scholar), RBM is an unlikely candidate for GBY, since most of its functional units are located outside the GBY critical region. PRKY and its X homologue, PRKX, encode members of the cAMP-dependent serine/threonine protein kinase family (Klink et al. Klink et al., 1995Klink A Schiebel K Winkelmann M Rao E Horsthemke B Ludecke HJ Claussen U et al.The human protein kinase gene PKX1 on Xp22.3 displays Xp/Yp homology and is a site of chromosomal instability.Hum Mol Genet. 1995; 4: 869-878Crossref PubMed Scopus (56) Google Scholar; Schiebel et al. Schiebel et al., 1997Schiebel K Mertz A Winkelmann M Glaser B Schempp W Rappold G FISH localization of the human Y-homolog of protein kinase PRKX (PRKY) to Yp11.2 and two pseudogenes to 15q26 and Xq12→q13.Cytogenet Cell Genet. 1997; 76: 49-52Crossref PubMed Scopus (15) Google Scholar). PRY is a newly identified repeated gene whose product displays some similarity to PTP-BL (Lahn and Page Lahn and Page, 1997Lahn BT Page DC Functional coherence of the human Y chromosome.Science. 1997; 278: 675-680Crossref PubMed Scopus (686) Google Scholar). Other copies of PRY are found in interval 6, outside the GBY critical region. Currently, we cannot exclude the possibility that mutation and/or aberrant expression of PRKY or PRY are responsible for the predisposition of the dysgenetic gonads of XY females to gonadoblastoma. Protein kinases often act as signal transducers for growth factor and cytokine receptors, whereas phosphatases counterbalance their effects (see Hunter Hunter, 1998aHunter T Anti-phosphatases take the stage.Nat Genet. 1998a; 18: 303-305Crossref PubMed Scopus (47) Google ScholarHunter, 1998bHunter T The Croonian Lecture, 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease.Philos Trans R Soc Lond B Biol Sci. 1998b; 353: 583-605Crossref PubMed Scopus (353) Google Scholar, for review). Indeed, there is ample precedent that activated protein kinases can serve as oncoproteins and that protein phosphatases can act to suppress tumor formation (see, e.g., Myers and Tonks Myers and Tonks, 1997Myers MP Tonks NK PTEN: sometimes taking it off can be better than putting it on.Am J Hum Genet. 1997; 61: 1234-1238Abstract Full Text Full Text PDF PubMed Scopus (78) Google Scholar). Hence, either PRKY or PRY may possess growth-regulatory functions, but the biological functions of these proteins are not yet understood. The remaining candidate locus for gonadoblastoma is TSPY, a multicopy gene that is located primarily in the GBY critical region at interval 3, as defined by deletion mapping (Arnemann et al. Arnemann et al., 1987Arnemann J Epplen JT Cooke HJ Sauermann U Engel W Schmidtke J A human Y-chromosomal DNA sequence expressed in testicular tissue.Nucleic Acids Res. 1987; 15: 8713-8724Crossref PubMed Scopus (86) Google Scholar, Arnemann et al., 1991Arnemann J Jakubiczka S Thuring S Schmidtke J Cloning and sequence analysis of a human Y-chromosome-derived, testicular cDNA, TSPY.Genomics. 1991; 11: 108-114Crossref PubMed Scopus (75) Google Scholar; Zhang et al. Zhang et al., 1992Zhang JS Yang-Feng TL Muller U Mohandas TK de Jong PJ Lau YF Molecular isolation and characterization of an expressed gene from the human Y chromosome.Hum Mol Genet. 1992; 1: 717-726Crossref PubMed Scopus (80) Google Scholar; Vogt et al. Vogt et al., 1997Vogt PH Affara N Davey P Hammer M Jobling MA Lau YF Mitchell M et al.Report of the Third International Workshop on Y Chromosome Mapping 1997. Heidelberg, Germany, April 13-16, 1997.Cytogenet Cell Genet. 1997; 79: 1-20Crossref PubMed Google Scholar). Several homologous copies have also been mapped on proximal intervals 4 and 5 on the long arm. TSPY expression has been detected in gonadoblastoma tissues (Tsuchiya et al. Tsuchiya et al., 1995Tsuchiya K Reijo R Page DC Disteche CM Gonadoblastoma: molecular definition of the susceptibility region on the Y chromosome.Am J Hum Genet. 1995; 57: 1400-1407PubMed Google Scholar). Significantly, as detailed below, recent studies provide circumstantial evidence supporting a role for TSPY as an oncogene. For this reason, TSPY has emerged as the most likely candidate for GBY. Approximately 20–40 copies of TSPY or of similar sequences cluster at two locations—TSPYA and TSPYB—within interval 3 on the short arm of the human Y chromosome (Vogt et al. Vogt et al., 1997Vogt PH Affara N Davey P Hammer M Jobling MA Lau YF Mitchell M et al.Report of the Third International Workshop on Y Chromosome Mapping 1997. Heidelberg, Germany, April 13-16, 1997.Cytogenet Cell Genet. 1997; 79: 1-20Crossref PubMed Google Scholar). Additional copies are also present in interval 4/5 on the long arm. Each copy of the gene consists of six exons distributed over 2.8 kb (Schnieders et al. Schnieders et al., 1996Schnieders F Dork T Arnemann J Vogel T Werner M Schmidtke J Testis-specific protein, Y-encoded (TSPY) expression in testicular tissues.Hum Mol Genet. 1996; 5: 1801-1807Crossref PubMed Scopus (186) Google Scholar) and is embedded in a 20-kb tandemly repeated unit (Zhang et al. Zhang et al., 1992Zhang JS Yang-Feng TL Muller U Mohandas TK de Jong PJ Lau YF Molecular isolation and characterization of an expressed gene from the human Y chromosome.Hum Mol Genet. 1992; 1: 717-726Crossref PubMed Scopus (80) Google Scholar; Manz et al. Manz et al., 1993Manz E Schnieders F Brechlin AM Schmidtke J TSPY-related sequences represent a microheterogeneous gene family organized as constitutive elements in DYZ5 tandem repeat units on the human Y chromosome.Genomics. 1993; 17: 726-731Crossref PubMed Scopus (70) Google Scholar). The number of functional units in this array is uncertain, but, in most cases, 35–45-kb DNA fragments from the region direct the expression of a normal-sized TSPY transcript in transfected cells (Zhang et al. Zhang et al., 1992Zhang JS Yang-Feng TL Muller U Mohandas TK de Jong PJ Lau YF Molecular isolation and characterization of an expressed gene from the human Y chromosome.Hum Mol Genet. 1992; 1: 717-726Crossref PubMed Scopus (80) Google Scholar). Hence, all necessary cis-acting transcription and RNA-processing signals appear to be present in most TSPY repeat units. Homologues of TSPY also map to the Y chromosome in other mammals, including primates, artiodactyls, and rodents (Conrad et al. Conrad et al., 1996Conrad C Hierl T Glaser B Taylor K Zeitler S Chandley AC Schempp W High-resolution fluorescence in situ hybridization of RBM- and TSPY-related cosmids on released Y chromatin in humans and pygmy chimpanzees.Chromosome Res. 1996; 4: 201-206Crossref PubMed Scopus (16) Google Scholar; Kim et al. Kim and Takenaka, 1996Kim HS Takenaka O A comparison of TSPY genes from Y-chromosomal DNA of the great apes and humans: sequence, evolution, and phylogeny.Am J Phys Anthropol. 1996; 100: 301-309Crossref PubMed Scopus (28) Google Scholar; Vogel et al. Vogel et al., 1997Vogel T Dechend F Manz E Jung C Jakubiczka S Fehr S Schmidtke J et al.Organization and expression of bovine TSPY.Mamm Genome. 1997; 8: 491-496Crossref PubMed Scopus (47) Google Scholar, Vogel et al., 1998aVogel T Boettger-Tong H Nanda I Dechend F Agulnik AI Bishop CE Schmid M et al.A murine TSPY.Chromosome Res. 1998a; 6: 35-40Crossref PubMed Scopus (25) Google Scholar Glaser et al. Glaser et al., 1998Glaser B Grutzner F Willmann U Stanyon R Arnold N Taylor K Rietschel W et al.Simian Y chromosomes: species-specific rearrangements of DAZ, RBM, and TSPY versus contiguity of PAR and SRY.Mamm Genome. 1998; 9: 226-231Crossref PubMed Scopus (45) Google Scholar; Mazeyrat and Mitchell Mazeyrat and Mitchell, 1998Mazeyrat S Mitchell MJ Rodent Y chromosome TSPY gene is functional in rat and non-functional in mouse.Hum Mol Genet. 1998; 7: 557-562Crossref PubMed Scopus (40) Google Scholar), and in all cases these genes exhibit a similar structural organization (Vogel et al. Vogel et al., 1997Vogel T Dechend F Manz E Jung C Jakubiczka S Fehr S Schmidtke J et al.Organization and expression of bovine TSPY.Mamm Genome. 1997; 8: 491-496Crossref PubMed Scopus (47) Google Scholar; Mazeyrat and Mitchell Mazeyrat and Mitchell, 1998Mazeyrat S Mitchell MJ Rodent Y chromosome TSPY gene is functional in rat and non-functional in mouse.Hum Mol Genet. 1998; 7: 557-562Crossref PubMed Scopus (40) Google Scholar). Two functional copies of Tspy are found on the rat Y chromosome (Mazeyrat and Mitchell Mazeyrat and Mitchell, 1998Mazeyrat S Mitchell MJ Rodent Y chromosome TSPY gene is functional in rat and non-functional in mouse.Hum Mol Genet. 1998; 7: 557-562Crossref PubMed Scopus (40) Google Scholar), although the mouse carries only a single, poorly expressed copy of the Tspy gene, which contains numerous in-frame stop codons within its coding sequence. This sequence almost certainly represents a pseudogene (Mazeyrat and Mitchell Mazeyrat and Mitchell, 1998Mazeyrat S Mitchell MJ Rodent Y chromosome TSPY gene is functional in rat and non-functional in mouse.Hum Mol Genet. 1998; 7: 557-562Crossref PubMed Scopus (40) Google Scholar; Vogel et al. Vogel et al., 1998aVogel T Boettger-Tong H Nanda I Dechend F Agulnik AI Bishop CE Schmid M et al.A murine TSPY.Chromosome Res. 1998a; 6: 35-40Crossref PubMed Scopus (25) Google Scholar), but other related cDNAs have recently been isolated from both human and mouse (Vogel et al. Vogel et al., 1998bVogel T Dittrich O Mehraein Y Dechend F Schnieders F Schmidtke J Murine and human TSPYL genes: novel members of the TSPY-SET-NAP1L1 family.Cytogenet Cell Genet. 1998b; 81: 265-270Crossref PubMed Scopus (47) Google Scholar), and one or more homologous genes may function in place of the Y-linked Tspy in the mouse. TSPY transcripts have also been detected in fetal testis as early as the 22d week of gestation in humans (Zhang et al. Zhang et al., 1992Zhang JS Yang-Feng TL Muller U Mohandas TK de Jong PJ Lau YF Molecular isolation and characterization of an expressed gene from the human Y chromosome.Hum Mol Genet. 1992; 1: 717-726Crossref PubMed Scopus (80) Google Scholar), and expression persists through adulthood. TSPY occurs in the adult testis as a 33-kD protein and as a phosphoprotein with an apparent molecular weight of 38 kD (Schnieders et al. Schnieders et al., 1996Schnieders F Dork T Arnemann J Vogel T Werner M Schmidtke J Testis-specific protein, Y-encoded (TSPY) expression in testicular tissues.Hum Mol Genet. 1996; 5: 1801-1807Crossref PubMed Scopus (186) Google Scholar; author's unpublished data). Immunohistological staining with a specific antibody localizes the TSPY epitope primarily to the cytoplasm of a subset of spermatogonial cells and around the basal lamina of the seminiferous tubules of the adult testis (Schnieders et al. Schnieders et al., 1996Schnieders F Dork T Arnemann J Vogel T Werner M Schmidtke J Testis-specific protein, Y-encoded (TSPY) expression in testicular tissues.Hum Mol Genet. 1996; 5: 1801-1807Crossref PubMed Scopus (186) Google Scholar). Interestingly, spermatogonial cells that express TSPY appear to be paired with adjacent cells that show lower expression. TSPY signals are also observed in the nuclei of a relatively small proportion of spermatogonial cells. Schnieders et al. (Schnieders et al., 1996Schnieders F Dork T Arnemann J Vogel T Werner M Schmidtke J Testis-specific protein, Y-encoded (TSPY) expression in testicular tissues.Hum Mol Genet. 1996; 5: 1801-1807Crossref PubMed Scopus (186) Google Scholar) hypothesize that TSPY regulates the normal proliferation of spermatogonia and marks the entry of the spermatogonia into the meiotic differentiation. Significantly, TSPY is detected with higher intensity in spermatogonia at early stages of testicular tumorigenesis, in carcinoma in situ of the testis (Schnieders et al. Schnieders et al., 1996Schnieders F Dork T Arnemann J Vogel T Werner M Schmidtke J Testis-specific protein, Y-encoded (TSPY) expression in testicular tissues.Hum Mol Genet. 1996; 5: 1801-1807Crossref PubMed Scopus (186) Google Scholar), and in seminomas (fig. 2). These results suggest that TSPY is aberrantly expressed in tumors with germ cell origins. Conversely, XY females, who exhibit Tfm as a result of mutations in the androgen-receptor gene, show positive TSPY staining in a much-reduced number of residual spermatogonia in their testes. Hence, TSPY expression appears to depend on spermatogenic activity and a proper hormonal environment. This postulate is reasonable since spermatogenesis is greatly influenced by male hormones (see reviews, McLachlan et al. McLachlan et al., 1996McLachlan RI Wreford NG O'Donnell L de Kretser DM Robertson DM The endocrine regulation of spermatogenesis: independent roles for testosterone and FSH.J Endocrinol. 1996; 148: 1-9Crossref PubMed Scopus (181) Google Scholar; Yong et al. Yong et al., 1998Yong EL Ghadessy F Wang Q Mifsud A Ng SC Androgen receptor transactivation domain and control of spermatogenesis.Rev Reprod. 1998; 3: 141-144Crossref PubMed Scopus (45) Google Scholar). If TSPY indeed serves a vital function in directing the spermatogonial stem cells to enter meiotic division, it is conceivable that its expression is regulated by androgen and androgen receptor. The testis-specific expression that inspired the naming of TSPY (Arnemann et al. Arnemann et al., 1987Arnemann J Epplen JT Cooke HJ Sauermann U Engel W Schmidtke J A human Y-chromosomal DNA sequence expressed in testicular tissue.Nucleic Acids Res. 1987; 15: 8713-8724Crossref PubMed Scopus (86) Google Scholar, Arnemann et al., 1991Arnemann J Jakubiczka S Thuring S Schmidtke J Cloning and sequence analysis o" @default.
- W2094188979 created "2016-06-24" @default.
- W2094188979 creator A5071266702 @default.
- W2094188979 date "1999-04-01" @default.
- W2094188979 modified "2023-10-13" @default.
- W2094188979 title "Gonadoblastoma, Testicular and Prostate Cancers, and the TSPY Gene" @default.
- W2094188979 cites W1492256206 @default.
- W2094188979 cites W1492906993 @default.
- W2094188979 cites W154312111 @default.
- W2094188979 cites W1545381643 @default.
- W2094188979 cites W1821169949 @default.
- W2094188979 cites W1928897054 @default.
- W2094188979 cites W1949453496 @default.
- W2094188979 cites W1963832673 @default.
- W2094188979 cites W1967025014 @default.
- W2094188979 cites W1971154752 @default.
- W2094188979 cites W1984083837 @default.
- W2094188979 cites W1992286888 @default.
- W2094188979 cites W1998940941 @default.
- W2094188979 cites W1999089733 @default.
- W2094188979 cites W1999784532 @default.
- W2094188979 cites W2000780971 @default.
- W2094188979 cites W2001438430 @default.
- W2094188979 cites W2001730931 @default.
- W2094188979 cites W2004632219 @default.
- W2094188979 cites W2007219572 @default.
- W2094188979 cites W2012529940 @default.
- W2094188979 cites W2015197182 @default.
- W2094188979 cites W2029798038 @default.
- W2094188979 cites W2034490685 @default.
- W2094188979 cites W2036687689 @default.
- W2094188979 cites W2039663743 @default.
- W2094188979 cites W2054177883 @default.
- W2094188979 cites W2054685854 @default.
- W2094188979 cites W2055086318 @default.
- W2094188979 cites W2057236811 @default.
- W2094188979 cites W2063834499 @default.
- W2094188979 cites W2065615773 @default.
- W2094188979 cites W2066335476 @default.
- W2094188979 cites W2072458634 @default.
- W2094188979 cites W2073441889 @default.
- W2094188979 cites W2074802447 @default.
- W2094188979 cites W2076437329 @default.
- W2094188979 cites W2078055488 @default.
- W2094188979 cites W2083069127 @default.
- W2094188979 cites W2085444802 @default.
- W2094188979 cites W2087247861 @default.
- W2094188979 cites W2091936112 @default.
- W2094188979 cites W2095124353 @default.
- W2094188979 cites W2097558464 @default.
- W2094188979 cites W2101775966 @default.
- W2094188979 cites W2106339391 @default.
- W2094188979 cites W2106609650 @default.
- W2094188979 cites W2107013933 @default.
- W2094188979 cites W2118056303 @default.
- W2094188979 cites W2124193450 @default.
- W2094188979 cites W2127739725 @default.
- W2094188979 cites W2136650753 @default.
- W2094188979 cites W2140760216 @default.
- W2094188979 cites W2144834759 @default.
- W2094188979 cites W2149246103 @default.
- W2094188979 cites W2149487092 @default.
- W2094188979 cites W2171253303 @default.
- W2094188979 cites W2171960879 @default.
- W2094188979 cites W2181901332 @default.
- W2094188979 cites W29606276 @default.
- W2094188979 cites W93044914 @default.
- W2094188979 doi "https://doi.org/10.1086/302353" @default.
- W2094188979 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1377814" @default.
- W2094188979 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10090875" @default.
- W2094188979 hasPublicationYear "1999" @default.
- W2094188979 type Work @default.
- W2094188979 sameAs 2094188979 @default.
- W2094188979 citedByCount "161" @default.
- W2094188979 countsByYear W20941889792012 @default.
- W2094188979 countsByYear W20941889792013 @default.
- W2094188979 countsByYear W20941889792014 @default.
- W2094188979 countsByYear W20941889792015 @default.
- W2094188979 countsByYear W20941889792016 @default.
- W2094188979 countsByYear W20941889792017 @default.
- W2094188979 countsByYear W20941889792018 @default.
- W2094188979 countsByYear W20941889792019 @default.
- W2094188979 countsByYear W20941889792020 @default.
- W2094188979 countsByYear W20941889792021 @default.
- W2094188979 countsByYear W20941889792022 @default.
- W2094188979 countsByYear W20941889792023 @default.
- W2094188979 crossrefType "journal-article" @default.
- W2094188979 hasAuthorship W2094188979A5071266702 @default.
- W2094188979 hasBestOaLocation W20941889791 @default.
- W2094188979 hasConcept C104317684 @default.
- W2094188979 hasConcept C121608353 @default.
- W2094188979 hasConcept C2776235491 @default.
- W2094188979 hasConcept C2779272188 @default.
- W2094188979 hasConcept C2781037291 @default.
- W2094188979 hasConcept C30481170 @default.
- W2094188979 hasConcept C53226629 @default.
- W2094188979 hasConcept C54355233 @default.
- W2094188979 hasConcept C71924100 @default.