Matches in SemOpenAlex for { <https://semopenalex.org/work/W2094202273> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2094202273 endingPage "24" @default.
- W2094202273 startingPage "15" @default.
- W2094202273 abstract "Abstract Flood mapping from Synthetic Aperture Radar (SAR) data has attracted considerable attention in recent years. Most available algorithms typically focus on single-image techniques which do not take into account the backscatter signature of a land surface under non-flooded conditions. In this study, harmonic analysis of a multi-temporal time series of >500 ENVISAT Advanced SAR (ASAR) scenes with a spatial resolution of 150 m was used to characterise the seasonality in backscatter under non-flooded conditions. Pixels which were inundated during a large-scale flood event during the summer 2007 floods of the River Severn (United Kingdom) showed strong deviations from normal seasonal behaviour as inferred from the harmonic model. The residuals were classified by means of an automatic threshold optimisation algorithm after masking out areas which are unlikely to be flooded using a topography-derived index. The results were validated against a reference dataset derived from high-resolution airborne imagery. For the water class, accuracies > 80% were found for non-urban land uses. A slight underestimation of the reference flood extent can be seen, mostly due to the lower spatial resolution of the ASAR imagery. Finally, an outlook for the proposed algorithm is given in the light of the Sentinel-1 mission." @default.
- W2094202273 created "2016-06-24" @default.
- W2094202273 creator A5003896647 @default.
- W2094202273 creator A5024904329 @default.
- W2094202273 creator A5058207004 @default.
- W2094202273 creator A5066754586 @default.
- W2094202273 date "2015-06-01" @default.
- W2094202273 modified "2023-09-29" @default.
- W2094202273 title "Flood detection from multi-temporal SAR data using harmonic analysis and change detection" @default.
- W2094202273 cites W1980557921 @default.
- W2094202273 cites W1981546716 @default.
- W2094202273 cites W1982188349 @default.
- W2094202273 cites W1984670836 @default.
- W2094202273 cites W1986850070 @default.
- W2094202273 cites W1988143118 @default.
- W2094202273 cites W2004744873 @default.
- W2094202273 cites W2025785651 @default.
- W2094202273 cites W2037385122 @default.
- W2094202273 cites W2043185941 @default.
- W2094202273 cites W2046429644 @default.
- W2094202273 cites W2053937117 @default.
- W2094202273 cites W2073719711 @default.
- W2094202273 cites W2078282665 @default.
- W2094202273 cites W2092141993 @default.
- W2094202273 cites W2093574418 @default.
- W2094202273 cites W2097816127 @default.
- W2094202273 cites W2119911758 @default.
- W2094202273 cites W2133059825 @default.
- W2094202273 cites W2137213180 @default.
- W2094202273 cites W2138002125 @default.
- W2094202273 cites W2138149909 @default.
- W2094202273 cites W2146247239 @default.
- W2094202273 cites W2159432279 @default.
- W2094202273 cites W2166531069 @default.
- W2094202273 cites W2171675471 @default.
- W2094202273 doi "https://doi.org/10.1016/j.jag.2014.12.001" @default.
- W2094202273 hasPublicationYear "2015" @default.
- W2094202273 type Work @default.
- W2094202273 sameAs 2094202273 @default.
- W2094202273 citedByCount "138" @default.
- W2094202273 countsByYear W20942022732015 @default.
- W2094202273 countsByYear W20942022732016 @default.
- W2094202273 countsByYear W20942022732017 @default.
- W2094202273 countsByYear W20942022732018 @default.
- W2094202273 countsByYear W20942022732019 @default.
- W2094202273 countsByYear W20942022732020 @default.
- W2094202273 countsByYear W20942022732021 @default.
- W2094202273 countsByYear W20942022732022 @default.
- W2094202273 countsByYear W20942022732023 @default.
- W2094202273 crossrefType "journal-article" @default.
- W2094202273 hasAuthorship W2094202273A5003896647 @default.
- W2094202273 hasAuthorship W2094202273A5024904329 @default.
- W2094202273 hasAuthorship W2094202273A5058207004 @default.
- W2094202273 hasAuthorship W2094202273A5066754586 @default.
- W2094202273 hasConcept C111368507 @default.
- W2094202273 hasConcept C127313418 @default.
- W2094202273 hasConcept C132651083 @default.
- W2094202273 hasConcept C166957645 @default.
- W2094202273 hasConcept C203595873 @default.
- W2094202273 hasConcept C205649164 @default.
- W2094202273 hasConcept C58640448 @default.
- W2094202273 hasConcept C62649853 @default.
- W2094202273 hasConcept C74256435 @default.
- W2094202273 hasConceptScore W2094202273C111368507 @default.
- W2094202273 hasConceptScore W2094202273C127313418 @default.
- W2094202273 hasConceptScore W2094202273C132651083 @default.
- W2094202273 hasConceptScore W2094202273C166957645 @default.
- W2094202273 hasConceptScore W2094202273C203595873 @default.
- W2094202273 hasConceptScore W2094202273C205649164 @default.
- W2094202273 hasConceptScore W2094202273C58640448 @default.
- W2094202273 hasConceptScore W2094202273C62649853 @default.
- W2094202273 hasConceptScore W2094202273C74256435 @default.
- W2094202273 hasFunder F4320318240 @default.
- W2094202273 hasLocation W20942022731 @default.
- W2094202273 hasOpenAccess W2094202273 @default.
- W2094202273 hasPrimaryLocation W20942022731 @default.
- W2094202273 hasRelatedWork W117302946 @default.
- W2094202273 hasRelatedWork W2007965909 @default.
- W2094202273 hasRelatedWork W2011409607 @default.
- W2094202273 hasRelatedWork W2066637908 @default.
- W2094202273 hasRelatedWork W2126212643 @default.
- W2094202273 hasRelatedWork W2138916851 @default.
- W2094202273 hasRelatedWork W2571356571 @default.
- W2094202273 hasRelatedWork W2911171462 @default.
- W2094202273 hasRelatedWork W4297892563 @default.
- W2094202273 hasRelatedWork W2964850348 @default.
- W2094202273 hasVolume "38" @default.
- W2094202273 isParatext "false" @default.
- W2094202273 isRetracted "false" @default.
- W2094202273 magId "2094202273" @default.
- W2094202273 workType "article" @default.