Matches in SemOpenAlex for { <https://semopenalex.org/work/W2094202287> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2094202287 abstract "Analysis of biomedical images is an important step in quantification of various diseases such as human spontaneous intracerebral brain hemorrhage (ICH). In particular, the study of outcome in patients having ICH requires measurements of various ICH parameters such as hemorrhage volume and their change over time. A multiresolution probabilistic approach for segmentation of CT head images is presented in this work. This method views the segmentation problem as a pixel labeling problem. In this application the labels are: background, skull, brain tissue, and ICH. The proposed method is based on the Maximum A-Posteriori (MAP) estimation of the unknown pixel labels. The MAP method maximizes the a-posterior probability of segmented image given the observed (input) image. Markov random field (MRF) model has been used for the posterior distribution. The MAP estimation of the segmented image has been determined using the simulated annealing (SA) algorithm. The SA algorithm is used to minimize the energy function associated with MRF posterior distribution function. A multiresolution SA (MSA) has been developed to speed up the annealing process. MSA is presented in detail in this work. A knowledge-based classification based on the brightness, size, shape and relative position toward other regions is performed at the end of the procedure. The regions are identified as background, skull, brain, ICH and calcifications." @default.
- W2094202287 created "2016-06-24" @default.
- W2094202287 creator A5047540566 @default.
- W2094202287 creator A5079211011 @default.
- W2094202287 date "1999-05-21" @default.
- W2094202287 modified "2023-10-18" @default.
- W2094202287 title "<title>Multiresolution simulated annealing for brain image analysis</title>" @default.
- W2094202287 cites W1964163787 @default.
- W2094202287 cites W2015513598 @default.
- W2094202287 cites W2134434542 @default.
- W2094202287 cites W2151507565 @default.
- W2094202287 doi "https://doi.org/10.1117/12.348508" @default.
- W2094202287 hasPublicationYear "1999" @default.
- W2094202287 type Work @default.
- W2094202287 sameAs 2094202287 @default.
- W2094202287 citedByCount "8" @default.
- W2094202287 countsByYear W20942022872012 @default.
- W2094202287 countsByYear W20942022872015 @default.
- W2094202287 countsByYear W20942022872017 @default.
- W2094202287 crossrefType "proceedings-article" @default.
- W2094202287 hasAuthorship W2094202287A5047540566 @default.
- W2094202287 hasAuthorship W2094202287A5079211011 @default.
- W2094202287 hasConcept C105795698 @default.
- W2094202287 hasConcept C107673813 @default.
- W2094202287 hasConcept C11413529 @default.
- W2094202287 hasConcept C124504099 @default.
- W2094202287 hasConcept C126980161 @default.
- W2094202287 hasConcept C153180895 @default.
- W2094202287 hasConcept C154945302 @default.
- W2094202287 hasConcept C160633673 @default.
- W2094202287 hasConcept C2778045648 @default.
- W2094202287 hasConcept C31972630 @default.
- W2094202287 hasConcept C33923547 @default.
- W2094202287 hasConcept C41008148 @default.
- W2094202287 hasConcept C49781872 @default.
- W2094202287 hasConcept C57830394 @default.
- W2094202287 hasConcept C89600930 @default.
- W2094202287 hasConcept C9810830 @default.
- W2094202287 hasConceptScore W2094202287C105795698 @default.
- W2094202287 hasConceptScore W2094202287C107673813 @default.
- W2094202287 hasConceptScore W2094202287C11413529 @default.
- W2094202287 hasConceptScore W2094202287C124504099 @default.
- W2094202287 hasConceptScore W2094202287C126980161 @default.
- W2094202287 hasConceptScore W2094202287C153180895 @default.
- W2094202287 hasConceptScore W2094202287C154945302 @default.
- W2094202287 hasConceptScore W2094202287C160633673 @default.
- W2094202287 hasConceptScore W2094202287C2778045648 @default.
- W2094202287 hasConceptScore W2094202287C31972630 @default.
- W2094202287 hasConceptScore W2094202287C33923547 @default.
- W2094202287 hasConceptScore W2094202287C41008148 @default.
- W2094202287 hasConceptScore W2094202287C49781872 @default.
- W2094202287 hasConceptScore W2094202287C57830394 @default.
- W2094202287 hasConceptScore W2094202287C89600930 @default.
- W2094202287 hasConceptScore W2094202287C9810830 @default.
- W2094202287 hasLocation W20942022871 @default.
- W2094202287 hasOpenAccess W2094202287 @default.
- W2094202287 hasPrimaryLocation W20942022871 @default.
- W2094202287 hasRelatedWork W1631910785 @default.
- W2094202287 hasRelatedWork W1669643531 @default.
- W2094202287 hasRelatedWork W174452041 @default.
- W2094202287 hasRelatedWork W2110230079 @default.
- W2094202287 hasRelatedWork W2122581818 @default.
- W2094202287 hasRelatedWork W2133744352 @default.
- W2094202287 hasRelatedWork W2159066190 @default.
- W2094202287 hasRelatedWork W2166767718 @default.
- W2094202287 hasRelatedWork W2739874619 @default.
- W2094202287 hasRelatedWork W3010219388 @default.
- W2094202287 isParatext "false" @default.
- W2094202287 isRetracted "false" @default.
- W2094202287 magId "2094202287" @default.
- W2094202287 workType "article" @default.