Matches in SemOpenAlex for { <https://semopenalex.org/work/W2094269152> ?p ?o ?g. }
- W2094269152 endingPage "75" @default.
- W2094269152 startingPage "63" @default.
- W2094269152 abstract "Microalgae have great potential to be used as part of a regenerative life support system and to facilitate in-situ resource utilization (ISRU) on long-duration human space missions. Little is currently known, however, about microalgal responses to the space environment over long (months) or even short (hours to days) time scales. We describe here the development of biological support subsystems for a prototype “3U” (i.e., three conjoined 10-cm cubes) nanosatellite, called GraviSat, designed to experimentally elucidate the effects of space microgravity and the radiation environment on microalgae and other microorganisms. The GraviSat project comprises the co-development of biological handling-and-support technologies with implementation of integrated measurement hardware for photosynthetic efficiency and physiological activity in support of long-duration (3–12 months) space missions. It supports sample replication in a fully autonomous system that will grow and analyze microalgal cultures in 120 μL wells around the circumference of a microfluidic polymer disc; the cultures will be launched while in stasis, then grown in orbit. The disc spins at different rotational velocities to generate a range of artificial gravity levels in space, from microgravity to multiples of Earth gravity. Development of the biological support technologies for GraviSat comprised the screening of more than twenty microalgal strains for various physical, metabolic and biochemical attributes that support prolonged growth in a microfluidic disc, as well as the capacity for reversible metabolic stasis. Hardware development included that necessary to facilitate accurate and precise measurements of physical parameters by optical methods (pulse amplitude modulated fluorometry) and electrochemical sensors (ion-sensitive microelectrodes). Nearly all microalgal strains were biocompatible with nanosatellite materials; however, microalgal growth was rapidly inhibited (∼1 week) within sealed microwells that did not include dissolved bicarbonate due to CO2 starvation. Additionally, oxygen production by some microalgae resulted in bubble formation within the wells, which interfered with sensor measurements. Our research achieved prolonged growth periods (>10 months) without excess oxygen production using two microalgal strains, Chlorella vulgaris UTEX 29 and Dunaliella bardawil 30 861, by lowering light intensities (2–10 μmol photons m−2 s−1) and temperature (4–12 °C). Although the experiments described here were performed to develop the GraviSat platform, the results of this study should be useful for the incorporation of microalgae in other satellite payloads with low-volume microfluidic systems." @default.
- W2094269152 created "2016-06-24" @default.
- W2094269152 creator A5010666334 @default.
- W2094269152 creator A5049825945 @default.
- W2094269152 creator A5065875481 @default.
- W2094269152 creator A5068775994 @default.
- W2094269152 creator A5090763304 @default.
- W2094269152 date "2014-10-01" @default.
- W2094269152 modified "2023-10-17" @default.
- W2094269152 title "Biological system development for GraviSat: A new platform for studying photosynthesis and microalgae in space" @default.
- W2094269152 cites W1007210389 @default.
- W2094269152 cites W1948228526 @default.
- W2094269152 cites W1975892234 @default.
- W2094269152 cites W1976179657 @default.
- W2094269152 cites W1979908366 @default.
- W2094269152 cites W1986535746 @default.
- W2094269152 cites W1996541892 @default.
- W2094269152 cites W1999103554 @default.
- W2094269152 cites W1999882027 @default.
- W2094269152 cites W2003616269 @default.
- W2094269152 cites W2009275409 @default.
- W2094269152 cites W2010480279 @default.
- W2094269152 cites W2019040894 @default.
- W2094269152 cites W2021610103 @default.
- W2094269152 cites W2024180189 @default.
- W2094269152 cites W2025406393 @default.
- W2094269152 cites W2033967797 @default.
- W2094269152 cites W2039009150 @default.
- W2094269152 cites W2046817240 @default.
- W2094269152 cites W2055296120 @default.
- W2094269152 cites W2058467913 @default.
- W2094269152 cites W2073614783 @default.
- W2094269152 cites W2076316500 @default.
- W2094269152 cites W2080791625 @default.
- W2094269152 cites W2082992458 @default.
- W2094269152 cites W2086074270 @default.
- W2094269152 cites W2099605162 @default.
- W2094269152 cites W2108849492 @default.
- W2094269152 cites W2128691780 @default.
- W2094269152 cites W2131036864 @default.
- W2094269152 cites W2139328007 @default.
- W2094269152 cites W2139532252 @default.
- W2094269152 cites W2146286718 @default.
- W2094269152 cites W2148399297 @default.
- W2094269152 cites W2149719174 @default.
- W2094269152 cites W2154339311 @default.
- W2094269152 cites W2154509483 @default.
- W2094269152 cites W2327244581 @default.
- W2094269152 cites W2588987108 @default.
- W2094269152 cites W3101286210 @default.
- W2094269152 doi "https://doi.org/10.1016/j.lssr.2014.09.004" @default.
- W2094269152 hasPublicationYear "2014" @default.
- W2094269152 type Work @default.
- W2094269152 sameAs 2094269152 @default.
- W2094269152 citedByCount "5" @default.
- W2094269152 countsByYear W20942691522019 @default.
- W2094269152 countsByYear W20942691522020 @default.
- W2094269152 countsByYear W20942691522021 @default.
- W2094269152 countsByYear W20942691522022 @default.
- W2094269152 countsByYear W20942691522023 @default.
- W2094269152 crossrefType "journal-article" @default.
- W2094269152 hasAuthorship W2094269152A5010666334 @default.
- W2094269152 hasAuthorship W2094269152A5049825945 @default.
- W2094269152 hasAuthorship W2094269152A5065875481 @default.
- W2094269152 hasAuthorship W2094269152A5068775994 @default.
- W2094269152 hasAuthorship W2094269152A5090763304 @default.
- W2094269152 hasBestOaLocation W20942691522 @default.
- W2094269152 hasConcept C104060986 @default.
- W2094269152 hasConcept C121332964 @default.
- W2094269152 hasConcept C124219066 @default.
- W2094269152 hasConcept C127413603 @default.
- W2094269152 hasConcept C1276947 @default.
- W2094269152 hasConcept C146978453 @default.
- W2094269152 hasConcept C171250308 @default.
- W2094269152 hasConcept C181762993 @default.
- W2094269152 hasConcept C183688256 @default.
- W2094269152 hasConcept C183696295 @default.
- W2094269152 hasConcept C192562407 @default.
- W2094269152 hasConcept C39432304 @default.
- W2094269152 hasConcept C41008148 @default.
- W2094269152 hasConcept C44154836 @default.
- W2094269152 hasConcept C59822182 @default.
- W2094269152 hasConcept C84795859 @default.
- W2094269152 hasConcept C86803240 @default.
- W2094269152 hasConcept C87355193 @default.
- W2094269152 hasConceptScore W2094269152C104060986 @default.
- W2094269152 hasConceptScore W2094269152C121332964 @default.
- W2094269152 hasConceptScore W2094269152C124219066 @default.
- W2094269152 hasConceptScore W2094269152C127413603 @default.
- W2094269152 hasConceptScore W2094269152C1276947 @default.
- W2094269152 hasConceptScore W2094269152C146978453 @default.
- W2094269152 hasConceptScore W2094269152C171250308 @default.
- W2094269152 hasConceptScore W2094269152C181762993 @default.
- W2094269152 hasConceptScore W2094269152C183688256 @default.
- W2094269152 hasConceptScore W2094269152C183696295 @default.
- W2094269152 hasConceptScore W2094269152C192562407 @default.
- W2094269152 hasConceptScore W2094269152C39432304 @default.
- W2094269152 hasConceptScore W2094269152C41008148 @default.