Matches in SemOpenAlex for { <https://semopenalex.org/work/W2094381420> ?p ?o ?g. }
- W2094381420 endingPage "22" @default.
- W2094381420 startingPage "8" @default.
- W2094381420 abstract "Equations are presented to describe the compositional evolution of magma chambers undergoing simultaneous recharge (R), evacuation (E), and fractional crystallization (FC). Constant mass magma chambers undergoing REFC will eventually approach a steady state composition due to the “buffering” effect of recharging magma. Steady state composition is attained after ∼3/(Dαx + αe) overturns of the magma chamber, where D is the bulk solid/melt partition coefficient for the element of interest and αx and αe are the proportions of crystallization and eruption/evacuation relative to the recharge rate. Steady state composition is given by Cre/(Dαx + αe). For low evacuation rates, steady state concentration and the time to reach steady state scale inversely with D. Compatible (D > 1) elements reach steady state faster than incompatible (D < 1) elements. Thus, magma chambers undergoing REFC will eventually evolve towards high incompatible element enrichments for a given depletion in a compatible element compared to magma chambers undergoing pure fractional crystallization. For example, REFC magma chambers will evolve to high incompatible element concentrations for a given MgO content compared to fractional crystallization. Not accounting for REFC will lead to over-estimation of the incompatible element content of primary magmas. Furthermore, unlike fractional crystallization alone, REFC can efficiently fractionate highly incompatible element ratios because the fractionation effect scales with the ratio of bulk D’s. By contrast, in pure fractional crystallization, ratios fractionate according to the arithmetic difference between the bulk D’s. The compositional impact of REFC should be most pronounced for magma chambers that are long-lived, have low rates of eruption/evacuation, and/or are characterized by high recharge rates relative to the mass of the magma chamber. The first two conditions are likely favored in deep crustal magma chambers where confining pressures are high and warm country rock decrease the cooling rates of magma chambers. By contrast, REFC should be less significant in shallow crustal magma chambers, which erupt and cool more efficiently due to lower confining pressures, colder country rock, and the cooling effects of hydrothermal systems. We thus speculate that the effects of REFC will be small in mid-ocean ridge settings and most pronounced in arc settings, particularly mature island arcs or continental arcs, where magma chambers >10 km depth are possible. This begs the question of whether high Fe3+, H2O and CO2 (all of which can be treated as incompatible “elements”) in arc basalts could be enhanced by REFC processes and thus not just reflect inheritance from the mantle source. We show that REFC can plausibly explain observed enrichments in Fe3+ and H2O in arc melts without significant depletion in MgO. Because the difference between calc-alkaline and tholeiitic differentiation series is mostly likely due to higher water and oxygen fugacity in the former, it may be worth considering the effects of REFC. Thus, if REFC is more pronounced in deep crustal magma chambers, mature island arcs and continental arcs would tend towards calc-alkaline differentiation, whereas juvenile island arcs would be more tholeiitic. To fully test the significance of REFC will require detailed analysis of other highly incompatible elements, but presently the relative differences in bulk D of such elements may not be constrained well enough. The equations presented here provide a framework for evaluating whether REFC should be considered when interpreting geochemical data in differentiated magmas. For completeness, we have also provided the more general equations for a magma chamber undergoing recharge (R), evacuation (E), crustal assimilation (A) and fractional crystallization (FC), e.g., REAFC, for constant mass, growing and dying magma chambers." @default.
- W2094381420 created "2016-06-24" @default.
- W2094381420 creator A5000404492 @default.
- W2094381420 creator A5005396191 @default.
- W2094381420 creator A5011268115 @default.
- W2094381420 date "2014-10-01" @default.
- W2094381420 modified "2023-10-17" @default.
- W2094381420 title "Modeling the compositional evolution of recharging, evacuating, and fractionating (REFC) magma chambers: Implications for differentiation of arc magmas" @default.
- W2094381420 cites W1489411196 @default.
- W2094381420 cites W1879999282 @default.
- W2094381420 cites W1912123584 @default.
- W2094381420 cites W1970547647 @default.
- W2094381420 cites W1978696207 @default.
- W2094381420 cites W1982590731 @default.
- W2094381420 cites W1987409368 @default.
- W2094381420 cites W1988520903 @default.
- W2094381420 cites W1994057479 @default.
- W2094381420 cites W1996694420 @default.
- W2094381420 cites W2002178446 @default.
- W2094381420 cites W2003424749 @default.
- W2094381420 cites W2004554912 @default.
- W2094381420 cites W2005354462 @default.
- W2094381420 cites W2006196198 @default.
- W2094381420 cites W2011599012 @default.
- W2094381420 cites W2020142959 @default.
- W2094381420 cites W2023219297 @default.
- W2094381420 cites W2024575502 @default.
- W2094381420 cites W2027862110 @default.
- W2094381420 cites W2029407151 @default.
- W2094381420 cites W2029533727 @default.
- W2094381420 cites W2031894158 @default.
- W2094381420 cites W2035297658 @default.
- W2094381420 cites W2040049557 @default.
- W2094381420 cites W2040335084 @default.
- W2094381420 cites W2040902135 @default.
- W2094381420 cites W2047129287 @default.
- W2094381420 cites W2051832891 @default.
- W2094381420 cites W2053483240 @default.
- W2094381420 cites W2054898297 @default.
- W2094381420 cites W2062995566 @default.
- W2094381420 cites W2072954890 @default.
- W2094381420 cites W2091178948 @default.
- W2094381420 cites W2099914884 @default.
- W2094381420 cites W2105265476 @default.
- W2094381420 cites W2106548985 @default.
- W2094381420 cites W2111173087 @default.
- W2094381420 cites W2115730736 @default.
- W2094381420 cites W2119091455 @default.
- W2094381420 cites W2119949381 @default.
- W2094381420 cites W2120265417 @default.
- W2094381420 cites W2120794222 @default.
- W2094381420 cites W2122924553 @default.
- W2094381420 cites W2123975486 @default.
- W2094381420 cites W2125314806 @default.
- W2094381420 cites W2127503576 @default.
- W2094381420 cites W2137973240 @default.
- W2094381420 cites W2141176070 @default.
- W2094381420 cites W2142758835 @default.
- W2094381420 cites W2148830159 @default.
- W2094381420 cites W2150081011 @default.
- W2094381420 cites W2151841546 @default.
- W2094381420 cites W2152869600 @default.
- W2094381420 cites W2153024854 @default.
- W2094381420 cites W2165506126 @default.
- W2094381420 cites W2168808656 @default.
- W2094381420 cites W2170189319 @default.
- W2094381420 cites W2170605098 @default.
- W2094381420 cites W2170969682 @default.
- W2094381420 cites W2181389865 @default.
- W2094381420 cites W2314885976 @default.
- W2094381420 cites W2325019720 @default.
- W2094381420 cites W2326714219 @default.
- W2094381420 cites W2331893182 @default.
- W2094381420 doi "https://doi.org/10.1016/j.gca.2013.08.009" @default.
- W2094381420 hasPublicationYear "2014" @default.
- W2094381420 type Work @default.
- W2094381420 sameAs 2094381420 @default.
- W2094381420 citedByCount "107" @default.
- W2094381420 countsByYear W20943814202013 @default.
- W2094381420 countsByYear W20943814202014 @default.
- W2094381420 countsByYear W20943814202015 @default.
- W2094381420 countsByYear W20943814202016 @default.
- W2094381420 countsByYear W20943814202017 @default.
- W2094381420 countsByYear W20943814202018 @default.
- W2094381420 countsByYear W20943814202019 @default.
- W2094381420 countsByYear W20943814202020 @default.
- W2094381420 countsByYear W20943814202021 @default.
- W2094381420 countsByYear W20943814202022 @default.
- W2094381420 countsByYear W20943814202023 @default.
- W2094381420 crossrefType "journal-article" @default.
- W2094381420 hasAuthorship W2094381420A5000404492 @default.
- W2094381420 hasAuthorship W2094381420A5005396191 @default.
- W2094381420 hasAuthorship W2094381420A5011268115 @default.
- W2094381420 hasConcept C11872896 @default.
- W2094381420 hasConcept C120806208 @default.
- W2094381420 hasConcept C121332964 @default.
- W2094381420 hasConcept C127313418 @default.
- W2094381420 hasConcept C161509811 @default.