Matches in SemOpenAlex for { <https://semopenalex.org/work/W2094397907> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2094397907 endingPage "416" @default.
- W2094397907 startingPage "407" @default.
- W2094397907 abstract "Abstract The item count technique is a survey methodology that is designed to elicit respondents’ truthful answers to sensitive questions such as racial prejudice and drug use. The method is also known as the list experiment or the unmatched count technique and is an alternative to the commonly used randomized response method. In this article, I propose new nonlinear least squares and maximum likelihood estimators for efficient multivariate regression analysis with the item count technique. The two-step estimation procedure and the Expectation Maximization algorithm are developed to facilitate the computation. Enabling multivariate regression analysis is essential because researchers are typically interested in knowing how the probability of answering the sensitive question affirmatively varies as a function of respondents’ characteristics. As an empirical illustration, the proposed methodology is applied to the 1991 National Race and Politics survey where the investigators used the item count technique to measure the degree of racial hatred in the United States. Small-scale simulation studies suggest that the maximum likelihood estimator can be substantially more efficient than alternative estimators. Statistical efficiency is an important concern for the item count technique because indirect questioning means loss of information. The open-source software is made available to implement the proposed methodology. Keywords: : Indirect questioningList experimentsPrivacy protectionSensitive questionsSurvey methodology" @default.
- W2094397907 created "2016-06-24" @default.
- W2094397907 creator A5015451961 @default.
- W2094397907 date "2011-06-01" @default.
- W2094397907 modified "2023-10-10" @default.
- W2094397907 title "Multivariate Regression Analysis for the Item Count Technique" @default.
- W2094397907 cites W1512762145 @default.
- W2094397907 cites W1978877986 @default.
- W2094397907 cites W2023051758 @default.
- W2094397907 cites W2028995298 @default.
- W2094397907 cites W2041223402 @default.
- W2094397907 cites W2046974906 @default.
- W2094397907 cites W2053914375 @default.
- W2094397907 cites W2076388729 @default.
- W2094397907 cites W2122345666 @default.
- W2094397907 cites W2134633904 @default.
- W2094397907 cites W2153476507 @default.
- W2094397907 cites W2155630254 @default.
- W2094397907 cites W2156695888 @default.
- W2094397907 cites W2161423584 @default.
- W2094397907 cites W4230921533 @default.
- W2094397907 cites W4247399381 @default.
- W2094397907 cites W4249192582 @default.
- W2094397907 doi "https://doi.org/10.1198/jasa.2011.ap10415" @default.
- W2094397907 hasPublicationYear "2011" @default.
- W2094397907 type Work @default.
- W2094397907 sameAs 2094397907 @default.
- W2094397907 citedByCount "205" @default.
- W2094397907 countsByYear W20943979072012 @default.
- W2094397907 countsByYear W20943979072013 @default.
- W2094397907 countsByYear W20943979072014 @default.
- W2094397907 countsByYear W20943979072015 @default.
- W2094397907 countsByYear W20943979072016 @default.
- W2094397907 countsByYear W20943979072017 @default.
- W2094397907 countsByYear W20943979072018 @default.
- W2094397907 countsByYear W20943979072019 @default.
- W2094397907 countsByYear W20943979072020 @default.
- W2094397907 countsByYear W20943979072021 @default.
- W2094397907 countsByYear W20943979072022 @default.
- W2094397907 countsByYear W20943979072023 @default.
- W2094397907 crossrefType "journal-article" @default.
- W2094397907 hasAuthorship W2094397907A5015451961 @default.
- W2094397907 hasBestOaLocation W20943979072 @default.
- W2094397907 hasConcept C100906024 @default.
- W2094397907 hasConcept C105795698 @default.
- W2094397907 hasConcept C149782125 @default.
- W2094397907 hasConcept C152877465 @default.
- W2094397907 hasConcept C161584116 @default.
- W2094397907 hasConcept C185429906 @default.
- W2094397907 hasConcept C33643355 @default.
- W2094397907 hasConcept C33923547 @default.
- W2094397907 hasConcept C41008148 @default.
- W2094397907 hasConceptScore W2094397907C100906024 @default.
- W2094397907 hasConceptScore W2094397907C105795698 @default.
- W2094397907 hasConceptScore W2094397907C149782125 @default.
- W2094397907 hasConceptScore W2094397907C152877465 @default.
- W2094397907 hasConceptScore W2094397907C161584116 @default.
- W2094397907 hasConceptScore W2094397907C185429906 @default.
- W2094397907 hasConceptScore W2094397907C33643355 @default.
- W2094397907 hasConceptScore W2094397907C33923547 @default.
- W2094397907 hasConceptScore W2094397907C41008148 @default.
- W2094397907 hasIssue "494" @default.
- W2094397907 hasLocation W20943979071 @default.
- W2094397907 hasLocation W20943979072 @default.
- W2094397907 hasOpenAccess W2094397907 @default.
- W2094397907 hasPrimaryLocation W20943979071 @default.
- W2094397907 hasRelatedWork W2024770159 @default.
- W2094397907 hasRelatedWork W2759839044 @default.
- W2094397907 hasRelatedWork W2910481370 @default.
- W2094397907 hasRelatedWork W2971731486 @default.
- W2094397907 hasRelatedWork W2974887920 @default.
- W2094397907 hasRelatedWork W31711046 @default.
- W2094397907 hasRelatedWork W3175363083 @default.
- W2094397907 hasRelatedWork W4214644238 @default.
- W2094397907 hasRelatedWork W4287880334 @default.
- W2094397907 hasRelatedWork W4366700029 @default.
- W2094397907 hasVolume "106" @default.
- W2094397907 isParatext "false" @default.
- W2094397907 isRetracted "false" @default.
- W2094397907 magId "2094397907" @default.
- W2094397907 workType "article" @default.