Matches in SemOpenAlex for { <https://semopenalex.org/work/W2094538577> ?p ?o ?g. }
- W2094538577 endingPage "912" @default.
- W2094538577 startingPage "901" @default.
- W2094538577 abstract "An accurate computer-assisted method able to perform regional segmentation on 3D single modality images and measure its volume is designed using a mixture of unsupervised and supervised artificial neural networks. Firstly, an unsupervised artificial neural network is used to estimate representative textures that appear in the images. The region of interest of the resultant images is selected by means of a multi-layer perceptron after a training using a single sample slice, which contains a central portion of the 3D region of interest. The method was applied to magnetic resonance imaging data collected from an experimental acute inflammatory model (T(2) weighted) and from a clinical study of human Alzheimer's disease (T(1) weighted) to evaluate the proposed method. In the first case, a high correlation and parallelism was registered between the volumetric measurements, of the injured and healthy tissue, by the proposed method with respect to the manual measurements (r = 0.82 and p < 0.05) and to the histopathological studies (r = 0.87 and p < 0.05). The method was also applied to the clinical studies, and similar results were derived of the manual and semi-automatic volumetric measurement of both hippocampus and the corpus callosum (0.95 and 0.88)." @default.
- W2094538577 created "2016-06-24" @default.
- W2094538577 creator A5013959907 @default.
- W2094538577 creator A5015531842 @default.
- W2094538577 creator A5026288210 @default.
- W2094538577 creator A5027055459 @default.
- W2094538577 creator A5027993173 @default.
- W2094538577 creator A5041664167 @default.
- W2094538577 creator A5054576237 @default.
- W2094538577 creator A5058390180 @default.
- W2094538577 creator A5064485987 @default.
- W2094538577 creator A5079278442 @default.
- W2094538577 creator A5090932186 @default.
- W2094538577 date "2003-10-01" @default.
- W2094538577 modified "2023-10-12" @default.
- W2094538577 title "Computer-assisted enhanced volumetric segmentation magnetic resonance imaging data using a mixture of artificial neural networks" @default.
- W2094538577 cites W1036856872 @default.
- W2094538577 cites W109581359 @default.
- W2094538577 cites W1976473223 @default.
- W2094538577 cites W1978818526 @default.
- W2094538577 cites W1992071507 @default.
- W2094538577 cites W2002647778 @default.
- W2094538577 cites W2015513598 @default.
- W2094538577 cites W2022939558 @default.
- W2094538577 cites W2024816688 @default.
- W2094538577 cites W2029578549 @default.
- W2094538577 cites W2037711351 @default.
- W2094538577 cites W2048141386 @default.
- W2094538577 cites W2049603594 @default.
- W2094538577 cites W2051364765 @default.
- W2094538577 cites W2054966202 @default.
- W2094538577 cites W2063098990 @default.
- W2094538577 cites W2063125200 @default.
- W2094538577 cites W2066362143 @default.
- W2094538577 cites W2076608722 @default.
- W2094538577 cites W2084258254 @default.
- W2094538577 cites W2097109632 @default.
- W2094538577 cites W2099290282 @default.
- W2094538577 cites W2105169845 @default.
- W2094538577 cites W2106904753 @default.
- W2094538577 cites W2107920575 @default.
- W2094538577 cites W2125504089 @default.
- W2094538577 cites W2130520030 @default.
- W2094538577 cites W2132513126 @default.
- W2094538577 cites W2133430122 @default.
- W2094538577 cites W2137676365 @default.
- W2094538577 cites W2140672289 @default.
- W2094538577 cites W2143084910 @default.
- W2094538577 cites W2151817208 @default.
- W2094538577 cites W2153087078 @default.
- W2094538577 cites W4299908182 @default.
- W2094538577 doi "https://doi.org/10.1016/s0730-725x(03)00193-0" @default.
- W2094538577 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/14599541" @default.
- W2094538577 hasPublicationYear "2003" @default.
- W2094538577 type Work @default.
- W2094538577 sameAs 2094538577 @default.
- W2094538577 citedByCount "25" @default.
- W2094538577 countsByYear W20945385772013 @default.
- W2094538577 countsByYear W20945385772014 @default.
- W2094538577 countsByYear W20945385772015 @default.
- W2094538577 countsByYear W20945385772018 @default.
- W2094538577 countsByYear W20945385772019 @default.
- W2094538577 countsByYear W20945385772020 @default.
- W2094538577 countsByYear W20945385772021 @default.
- W2094538577 countsByYear W20945385772022 @default.
- W2094538577 crossrefType "journal-article" @default.
- W2094538577 hasAuthorship W2094538577A5013959907 @default.
- W2094538577 hasAuthorship W2094538577A5015531842 @default.
- W2094538577 hasAuthorship W2094538577A5026288210 @default.
- W2094538577 hasAuthorship W2094538577A5027055459 @default.
- W2094538577 hasAuthorship W2094538577A5027993173 @default.
- W2094538577 hasAuthorship W2094538577A5041664167 @default.
- W2094538577 hasAuthorship W2094538577A5054576237 @default.
- W2094538577 hasAuthorship W2094538577A5058390180 @default.
- W2094538577 hasAuthorship W2094538577A5064485987 @default.
- W2094538577 hasAuthorship W2094538577A5079278442 @default.
- W2094538577 hasAuthorship W2094538577A5090932186 @default.
- W2094538577 hasBestOaLocation W20945385772 @default.
- W2094538577 hasConcept C124504099 @default.
- W2094538577 hasConcept C126838900 @default.
- W2094538577 hasConcept C143409427 @default.
- W2094538577 hasConcept C153180895 @default.
- W2094538577 hasConcept C154945302 @default.
- W2094538577 hasConcept C19609008 @default.
- W2094538577 hasConcept C2780226545 @default.
- W2094538577 hasConcept C31972630 @default.
- W2094538577 hasConcept C41008148 @default.
- W2094538577 hasConcept C50644808 @default.
- W2094538577 hasConcept C60908668 @default.
- W2094538577 hasConcept C71924100 @default.
- W2094538577 hasConcept C89600930 @default.
- W2094538577 hasConceptScore W2094538577C124504099 @default.
- W2094538577 hasConceptScore W2094538577C126838900 @default.
- W2094538577 hasConceptScore W2094538577C143409427 @default.
- W2094538577 hasConceptScore W2094538577C153180895 @default.
- W2094538577 hasConceptScore W2094538577C154945302 @default.
- W2094538577 hasConceptScore W2094538577C19609008 @default.
- W2094538577 hasConceptScore W2094538577C2780226545 @default.