Matches in SemOpenAlex for { <https://semopenalex.org/work/W2094597486> ?p ?o ?g. }
- W2094597486 endingPage "89" @default.
- W2094597486 startingPage "78" @default.
- W2094597486 abstract "This paper addresses the denoising problem associated with magnetic resonance spectroscopic imaging (MRSI), where signal-to-noise ratio (SNR) has been a critical problem. A new scheme is proposed, which exploits two low-rank structures that exist in MRSI data, one due to partial separability and the other due to linear predictability. Denoising is performed by arranging the measured data in appropriate matrix forms (i.e., Casorati and Hankel) and applying low-rank approximations by singular value decomposition (SVD). The proposed method has been validated using simulated and experimental data, producing encouraging results. Specifically, the method can effectively denoise MRSI data in a wide range of SNR values while preserving spatial-spectral features. The method could prove useful for denoising MRSI data and other spatial-spectral and spatial-temporal imaging data as well." @default.
- W2094597486 created "2016-06-24" @default.
- W2094597486 creator A5005908865 @default.
- W2094597486 creator A5019294923 @default.
- W2094597486 creator A5044374002 @default.
- W2094597486 creator A5086958314 @default.
- W2094597486 date "2013-01-01" @default.
- W2094597486 modified "2023-10-18" @default.
- W2094597486 title "Denoising MR Spectroscopic Imaging Data With Low-Rank Approximations" @default.
- W2094597486 cites W1977900532 @default.
- W2094597486 cites W1981956876 @default.
- W2094597486 cites W1987997176 @default.
- W2094597486 cites W1996827560 @default.
- W2094597486 cites W1996847672 @default.
- W2094597486 cites W1999795676 @default.
- W2094597486 cites W2003430327 @default.
- W2094597486 cites W2013186713 @default.
- W2094597486 cites W2021155072 @default.
- W2094597486 cites W2024971034 @default.
- W2094597486 cites W2045900488 @default.
- W2094597486 cites W2051607590 @default.
- W2094597486 cites W2056370875 @default.
- W2094597486 cites W2058453951 @default.
- W2094597486 cites W2060581589 @default.
- W2094597486 cites W2064782205 @default.
- W2094597486 cites W2074752164 @default.
- W2094597486 cites W2080698720 @default.
- W2094597486 cites W2082688434 @default.
- W2094597486 cites W2084184095 @default.
- W2094597486 cites W2099103871 @default.
- W2094597486 cites W2104058133 @default.
- W2094597486 cites W2118682956 @default.
- W2094597486 cites W2119429940 @default.
- W2094597486 cites W2133120229 @default.
- W2094597486 cites W2136396015 @default.
- W2094597486 cites W2137622120 @default.
- W2094597486 cites W2149513726 @default.
- W2094597486 cites W2157549219 @default.
- W2094597486 cites W2158514967 @default.
- W2094597486 cites W2160269836 @default.
- W2094597486 cites W2165887549 @default.
- W2094597486 cites W4246406957 @default.
- W2094597486 doi "https://doi.org/10.1109/tbme.2012.2223466" @default.
- W2094597486 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3800688" @default.
- W2094597486 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23070291" @default.
- W2094597486 hasPublicationYear "2013" @default.
- W2094597486 type Work @default.
- W2094597486 sameAs 2094597486 @default.
- W2094597486 citedByCount "122" @default.
- W2094597486 countsByYear W20945974862013 @default.
- W2094597486 countsByYear W20945974862014 @default.
- W2094597486 countsByYear W20945974862015 @default.
- W2094597486 countsByYear W20945974862016 @default.
- W2094597486 countsByYear W20945974862017 @default.
- W2094597486 countsByYear W20945974862018 @default.
- W2094597486 countsByYear W20945974862019 @default.
- W2094597486 countsByYear W20945974862020 @default.
- W2094597486 countsByYear W20945974862021 @default.
- W2094597486 countsByYear W20945974862022 @default.
- W2094597486 countsByYear W20945974862023 @default.
- W2094597486 crossrefType "journal-article" @default.
- W2094597486 hasAuthorship W2094597486A5005908865 @default.
- W2094597486 hasAuthorship W2094597486A5019294923 @default.
- W2094597486 hasAuthorship W2094597486A5044374002 @default.
- W2094597486 hasAuthorship W2094597486A5086958314 @default.
- W2094597486 hasBestOaLocation W20945974862 @default.
- W2094597486 hasConcept C109282560 @default.
- W2094597486 hasConcept C11413529 @default.
- W2094597486 hasConcept C114614502 @default.
- W2094597486 hasConcept C115961682 @default.
- W2094597486 hasConcept C121332964 @default.
- W2094597486 hasConcept C126838900 @default.
- W2094597486 hasConcept C134306372 @default.
- W2094597486 hasConcept C13944312 @default.
- W2094597486 hasConcept C143409427 @default.
- W2094597486 hasConcept C153180895 @default.
- W2094597486 hasConcept C154945302 @default.
- W2094597486 hasConcept C158693339 @default.
- W2094597486 hasConcept C163294075 @default.
- W2094597486 hasConcept C164226766 @default.
- W2094597486 hasConcept C22789450 @default.
- W2094597486 hasConcept C25023664 @default.
- W2094597486 hasConcept C33923547 @default.
- W2094597486 hasConcept C41008148 @default.
- W2094597486 hasConcept C42355184 @default.
- W2094597486 hasConcept C62520636 @default.
- W2094597486 hasConcept C71924100 @default.
- W2094597486 hasConcept C76155785 @default.
- W2094597486 hasConcept C90199385 @default.
- W2094597486 hasConcept C96781048 @default.
- W2094597486 hasConcept C99498987 @default.
- W2094597486 hasConceptScore W2094597486C109282560 @default.
- W2094597486 hasConceptScore W2094597486C11413529 @default.
- W2094597486 hasConceptScore W2094597486C114614502 @default.
- W2094597486 hasConceptScore W2094597486C115961682 @default.
- W2094597486 hasConceptScore W2094597486C121332964 @default.
- W2094597486 hasConceptScore W2094597486C126838900 @default.
- W2094597486 hasConceptScore W2094597486C134306372 @default.