Matches in SemOpenAlex for { <https://semopenalex.org/work/W2094597777> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2094597777 endingPage "168" @default.
- W2094597777 startingPage "159" @default.
- W2094597777 abstract "Parsing, the task of identifying syntactic components, e.g., noun and verb phrases, in a sentence, is one of the fundamental tasks in natural language processing. Many natural language applications such as spoken-language understanding, machine translation, and information extraction, would benefit from, or even require, high accuracy parsing as a preprocessing step. Even though most state-of-the-art statistical parsers were initially constructed for parsing in English, most of them are not language-specific, in that they do not rely on properties of the language that are specific to English. Therefore, construction of a parser in a given language becomes a matter of retraining the statistical parameters with a Treebank in the corresponding language. The development of the Chinese treebank [Xia et al. 2000] spurred the construction of parsers for Chinese. However, Chinese as a language poses some unique problems for the development of a statistical parser, the most apparent being word segmentation. Since words in written Chinese are not delimited in the same way as in Western languages, the first problem that needs to be solved before an existing statistical method can be applied to Chinese is to identify the word boundaries. This is a step that is neglected by most pre-existing Chinese parsers, which assume that the input data has already been pre-segmented. This article describes a character-based statistical parser, which gives the best performance to-date on the Chinese treebank data. We augment an existing maximum entropy parser with transformation-based learning, creating a parser that can operate at the character level. We present experiments that show that our parser achieves results that are close to those achievable under perfect word segmentation conditions." @default.
- W2094597777 created "2016-06-24" @default.
- W2094597777 creator A5021485728 @default.
- W2094597777 creator A5033822869 @default.
- W2094597777 creator A5051682329 @default.
- W2094597777 creator A5065856469 @default.
- W2094597777 date "2004-06-01" @default.
- W2094597777 modified "2023-10-15" @default.
- W2094597777 title "A maximum-entropy chinese parser augmented by transformation-based learning" @default.
- W2094597777 cites W1507894573 @default.
- W2094597777 cites W1558333962 @default.
- W2094597777 cites W1623072288 @default.
- W2094597777 cites W1632114991 @default.
- W2094597777 cites W1773803948 @default.
- W2094597777 cites W2000566875 @default.
- W2094597777 cites W2031164055 @default.
- W2094597777 cites W2045628429 @default.
- W2094597777 cites W2117400858 @default.
- W2094597777 cites W2145216370 @default.
- W2094597777 cites W2146113428 @default.
- W2094597777 cites W2158873310 @default.
- W2094597777 cites W2217873082 @default.
- W2094597777 cites W2990644213 @default.
- W2094597777 cites W82889912 @default.
- W2094597777 doi "https://doi.org/10.1145/1034780.1034786" @default.
- W2094597777 hasPublicationYear "2004" @default.
- W2094597777 type Work @default.
- W2094597777 sameAs 2094597777 @default.
- W2094597777 citedByCount "31" @default.
- W2094597777 countsByYear W20945977772012 @default.
- W2094597777 countsByYear W20945977772013 @default.
- W2094597777 countsByYear W20945977772014 @default.
- W2094597777 countsByYear W20945977772015 @default.
- W2094597777 countsByYear W20945977772020 @default.
- W2094597777 countsByYear W20945977772021 @default.
- W2094597777 crossrefType "journal-article" @default.
- W2094597777 hasAuthorship W2094597777A5021485728 @default.
- W2094597777 hasAuthorship W2094597777A5033822869 @default.
- W2094597777 hasAuthorship W2094597777A5051682329 @default.
- W2094597777 hasAuthorship W2094597777A5065856469 @default.
- W2094597777 hasConcept C118364021 @default.
- W2094597777 hasConcept C154945302 @default.
- W2094597777 hasConcept C186644900 @default.
- W2094597777 hasConcept C203005215 @default.
- W2094597777 hasConcept C204321447 @default.
- W2094597777 hasConcept C206134035 @default.
- W2094597777 hasConcept C41008148 @default.
- W2094597777 hasConcept C42560504 @default.
- W2094597777 hasConceptScore W2094597777C118364021 @default.
- W2094597777 hasConceptScore W2094597777C154945302 @default.
- W2094597777 hasConceptScore W2094597777C186644900 @default.
- W2094597777 hasConceptScore W2094597777C203005215 @default.
- W2094597777 hasConceptScore W2094597777C204321447 @default.
- W2094597777 hasConceptScore W2094597777C206134035 @default.
- W2094597777 hasConceptScore W2094597777C41008148 @default.
- W2094597777 hasConceptScore W2094597777C42560504 @default.
- W2094597777 hasIssue "2" @default.
- W2094597777 hasLocation W20945977771 @default.
- W2094597777 hasOpenAccess W2094597777 @default.
- W2094597777 hasPrimaryLocation W20945977771 @default.
- W2094597777 hasRelatedWork W1585034923 @default.
- W2094597777 hasRelatedWork W2094597777 @default.
- W2094597777 hasRelatedWork W2106048106 @default.
- W2094597777 hasRelatedWork W2167662847 @default.
- W2094597777 hasRelatedWork W2281562628 @default.
- W2094597777 hasRelatedWork W2559370752 @default.
- W2094597777 hasRelatedWork W2817971408 @default.
- W2094597777 hasRelatedWork W28706907 @default.
- W2094597777 hasRelatedWork W4226372027 @default.
- W2094597777 hasRelatedWork W3151198705 @default.
- W2094597777 hasVolume "3" @default.
- W2094597777 isParatext "false" @default.
- W2094597777 isRetracted "false" @default.
- W2094597777 magId "2094597777" @default.
- W2094597777 workType "article" @default.