Matches in SemOpenAlex for { <https://semopenalex.org/work/W2094645168> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2094645168 endingPage "276" @default.
- W2094645168 startingPage "270" @default.
- W2094645168 abstract "In this study, the application of artificial neural networks (ANN) to predict the ultimate moment capacity of reinforced concrete (RC) slabs in fire is investigated. An ANN model is built, trained and tested using 294 data for slabs exposed to fire. The data used in the ANN model consists of seven input parameters, which are the distance from the extreme fiber in tension to the centroid of the steel on the tension side of the slab (d′), the effective depth (d), the ratio of previous parameters (d′/d), the area of reinforcement on the tension face of the slab (As), the fire exposure time (t), the compressive strength of the concrete (fcd), and the yield strength of the reinforcement (fyd). It is shown that ANN model predicts the ultimate moment capacity (Mu) of RC slabs in fire with high degree of accuracy within the range of input parameters considered. The moment capacities predicted by ANN are in line with the results provided by the ultimate moment capacity equation. These results are important as ANN model alleviates the problem of computational complexity in determining Mu." @default.
- W2094645168 created "2016-06-24" @default.
- W2094645168 creator A5075371762 @default.
- W2094645168 date "2010-02-01" @default.
- W2094645168 modified "2023-10-13" @default.
- W2094645168 title "Prediction of the moment capacity of reinforced concrete slabs in fire using artificial neural networks" @default.
- W2094645168 cites W1973484369 @default.
- W2094645168 cites W1976940329 @default.
- W2094645168 cites W1993767665 @default.
- W2094645168 cites W2006322426 @default.
- W2094645168 cites W2015634532 @default.
- W2094645168 cites W2017276458 @default.
- W2094645168 cites W2027399349 @default.
- W2094645168 cites W2027560987 @default.
- W2094645168 cites W2054238049 @default.
- W2094645168 cites W2061199522 @default.
- W2094645168 cites W2063311258 @default.
- W2094645168 cites W2077321525 @default.
- W2094645168 cites W2077458446 @default.
- W2094645168 cites W2078339956 @default.
- W2094645168 cites W2125305954 @default.
- W2094645168 cites W2129664529 @default.
- W2094645168 cites W4232058634 @default.
- W2094645168 cites W4252026969 @default.
- W2094645168 doi "https://doi.org/10.1016/j.advengsoft.2009.07.006" @default.
- W2094645168 hasPublicationYear "2010" @default.
- W2094645168 type Work @default.
- W2094645168 sameAs 2094645168 @default.
- W2094645168 citedByCount "70" @default.
- W2094645168 countsByYear W20946451682012 @default.
- W2094645168 countsByYear W20946451682013 @default.
- W2094645168 countsByYear W20946451682014 @default.
- W2094645168 countsByYear W20946451682015 @default.
- W2094645168 countsByYear W20946451682016 @default.
- W2094645168 countsByYear W20946451682017 @default.
- W2094645168 countsByYear W20946451682018 @default.
- W2094645168 countsByYear W20946451682019 @default.
- W2094645168 countsByYear W20946451682020 @default.
- W2094645168 countsByYear W20946451682021 @default.
- W2094645168 countsByYear W20946451682022 @default.
- W2094645168 countsByYear W20946451682023 @default.
- W2094645168 crossrefType "journal-article" @default.
- W2094645168 hasAuthorship W2094645168A5075371762 @default.
- W2094645168 hasConcept C113740112 @default.
- W2094645168 hasConcept C121332964 @default.
- W2094645168 hasConcept C127413603 @default.
- W2094645168 hasConcept C146599234 @default.
- W2094645168 hasConcept C154945302 @default.
- W2094645168 hasConcept C159985019 @default.
- W2094645168 hasConcept C179254644 @default.
- W2094645168 hasConcept C186068551 @default.
- W2094645168 hasConcept C192562407 @default.
- W2094645168 hasConcept C30407753 @default.
- W2094645168 hasConcept C33923547 @default.
- W2094645168 hasConcept C41008148 @default.
- W2094645168 hasConcept C50644808 @default.
- W2094645168 hasConcept C66938386 @default.
- W2094645168 hasConcept C67203356 @default.
- W2094645168 hasConcept C74650414 @default.
- W2094645168 hasConceptScore W2094645168C113740112 @default.
- W2094645168 hasConceptScore W2094645168C121332964 @default.
- W2094645168 hasConceptScore W2094645168C127413603 @default.
- W2094645168 hasConceptScore W2094645168C146599234 @default.
- W2094645168 hasConceptScore W2094645168C154945302 @default.
- W2094645168 hasConceptScore W2094645168C159985019 @default.
- W2094645168 hasConceptScore W2094645168C179254644 @default.
- W2094645168 hasConceptScore W2094645168C186068551 @default.
- W2094645168 hasConceptScore W2094645168C192562407 @default.
- W2094645168 hasConceptScore W2094645168C30407753 @default.
- W2094645168 hasConceptScore W2094645168C33923547 @default.
- W2094645168 hasConceptScore W2094645168C41008148 @default.
- W2094645168 hasConceptScore W2094645168C50644808 @default.
- W2094645168 hasConceptScore W2094645168C66938386 @default.
- W2094645168 hasConceptScore W2094645168C67203356 @default.
- W2094645168 hasConceptScore W2094645168C74650414 @default.
- W2094645168 hasIssue "2" @default.
- W2094645168 hasLocation W20946451681 @default.
- W2094645168 hasOpenAccess W2094645168 @default.
- W2094645168 hasPrimaryLocation W20946451681 @default.
- W2094645168 hasRelatedWork W2085712541 @default.
- W2094645168 hasRelatedWork W2127510415 @default.
- W2094645168 hasRelatedWork W2214519065 @default.
- W2094645168 hasRelatedWork W2242838267 @default.
- W2094645168 hasRelatedWork W2361619840 @default.
- W2094645168 hasRelatedWork W2371033950 @default.
- W2094645168 hasRelatedWork W2388297725 @default.
- W2094645168 hasRelatedWork W3126440225 @default.
- W2094645168 hasRelatedWork W3147049919 @default.
- W2094645168 hasRelatedWork W1965574704 @default.
- W2094645168 hasVolume "41" @default.
- W2094645168 isParatext "false" @default.
- W2094645168 isRetracted "false" @default.
- W2094645168 magId "2094645168" @default.
- W2094645168 workType "article" @default.