Matches in SemOpenAlex for { <https://semopenalex.org/work/W2094698052> ?p ?o ?g. }
- W2094698052 endingPage "5253" @default.
- W2094698052 startingPage "5253" @default.
- W2094698052 abstract "The phosphodiester linkage central to biological systems has been modeled by methyl phosphodiester (MPDE) in various theoretical and experimental studies. Under physiological conditions, hydrolysis of the phosphodiester is negligible, however this process can be catalyzed in the presence of metal ions. To understand the role of alkali metals in MPDE hydrolysis and, in particular, how it influences the reaction pathway and the associated energetics, density functional calculations employing the 6-31+G(d,p) basis set have been carried out. Different pathways that include the reactant, intermediates and the products have been investigated for MPDE hydrolysis catalyzed by one or two lithium ions, characterized as stationary point geometries on the potential energy surface. The pathways A and B incorporate a single lithium ion bonded to different oxygens of the diester functionality. In pathway C, a six-membered ring was noticed wherein the nucleophile bridges two lithium ions interacting with different oxygens of the phosphoryl group. Furthermore, in the pathway (D) incorporating two lithium ions, one of the lithium ions interacts with the hydroxyl group and another with the methoxy oxygen; both metal ions are coordinated by the same phosphoryl oxygen. In addition to this, yet another pathway (E), where the metal ions are bound to different oxygens of the phosphoryl group, has also been dealt with. The calculations have shown that the A and B pathways lead to a single step reaction. A three-step mechanism including the nucleophilic (hydroxyl) attack, rotation of a methyl group and, finally, departure of the methoxy group has been predicted for the D and E profiles. Both D and E pathways are favored equally (with a marginal difference of 0.3 kJ mol−1 in their activation energies) in the gas phase and a transition state corresponding to nucleophilic attack with an energy barrier of 32.5 kJ mol−1 was located when lithium was used. A penta-coordinated phosphorous intermediate on the potential energy surface was characterized along these pathways. MPDE hydrolysis yielded a lower energy barrier for lithium than those for the remaining alkali metal ions. This agrees well with the experimentally observed trend for the hydrolysis rates: Li > Na > K. Self consistent reaction field (SCRF) calculations reveal the lower energy barrier between the reactant and the transition state for the nucleophilic attack in nonpolar solvents. The extent of bond formation (or cleavage) in different stationary point structures along the reaction path as estimated from the electron density at the bond critical point in the molecular electron density topography, has proven useful in distinguishing the associative or dissociative reaction pathways." @default.
- W2094698052 created "2016-06-24" @default.
- W2094698052 creator A5019406946 @default.
- W2094698052 creator A5023972426 @default.
- W2094698052 creator A5089336261 @default.
- W2094698052 date "2009-01-01" @default.
- W2094698052 modified "2023-10-18" @default.
- W2094698052 title "Alkali metals (Li, Na, and K) in methyl phosphodiester hydrolysis" @default.
- W2094698052 cites W119538510 @default.
- W2094698052 cites W1576248431 @default.
- W2094698052 cites W1964261732 @default.
- W2094698052 cites W1964848478 @default.
- W2094698052 cites W1968580578 @default.
- W2094698052 cites W1969169061 @default.
- W2094698052 cites W1972097509 @default.
- W2094698052 cites W1980723175 @default.
- W2094698052 cites W1980789947 @default.
- W2094698052 cites W1985017373 @default.
- W2094698052 cites W1986647570 @default.
- W2094698052 cites W1987319002 @default.
- W2094698052 cites W1987702006 @default.
- W2094698052 cites W1991127835 @default.
- W2094698052 cites W1993620005 @default.
- W2094698052 cites W1994047190 @default.
- W2094698052 cites W1994740416 @default.
- W2094698052 cites W2003647029 @default.
- W2094698052 cites W2003809510 @default.
- W2094698052 cites W2005207031 @default.
- W2094698052 cites W2008955388 @default.
- W2094698052 cites W2015293171 @default.
- W2094698052 cites W2018929649 @default.
- W2094698052 cites W2019393934 @default.
- W2094698052 cites W2020377751 @default.
- W2094698052 cites W2021502908 @default.
- W2094698052 cites W2022006168 @default.
- W2094698052 cites W2023262436 @default.
- W2094698052 cites W2023271753 @default.
- W2094698052 cites W2023893774 @default.
- W2094698052 cites W2029867653 @default.
- W2094698052 cites W2030299510 @default.
- W2094698052 cites W2038083805 @default.
- W2094698052 cites W2038486123 @default.
- W2094698052 cites W2044961513 @default.
- W2094698052 cites W2046296837 @default.
- W2094698052 cites W2047788433 @default.
- W2094698052 cites W2048849718 @default.
- W2094698052 cites W2051940720 @default.
- W2094698052 cites W2052066505 @default.
- W2094698052 cites W2053831115 @default.
- W2094698052 cites W2054250239 @default.
- W2094698052 cites W2055641523 @default.
- W2094698052 cites W2057042405 @default.
- W2094698052 cites W2063020900 @default.
- W2094698052 cites W2065482601 @default.
- W2094698052 cites W2067420742 @default.
- W2094698052 cites W2070963244 @default.
- W2094698052 cites W2071955309 @default.
- W2094698052 cites W2073142182 @default.
- W2094698052 cites W2075020793 @default.
- W2094698052 cites W2075746957 @default.
- W2094698052 cites W2082666274 @default.
- W2094698052 cites W2083281144 @default.
- W2094698052 cites W2084363574 @default.
- W2094698052 cites W2085251760 @default.
- W2094698052 cites W2088677737 @default.
- W2094698052 cites W2088900883 @default.
- W2094698052 cites W2089079476 @default.
- W2094698052 cites W2090492357 @default.
- W2094698052 cites W2092442088 @default.
- W2094698052 cites W2094316326 @default.
- W2094698052 cites W2095474273 @default.
- W2094698052 cites W2103511030 @default.
- W2094698052 cites W2109557064 @default.
- W2094698052 cites W2115861713 @default.
- W2094698052 cites W2116440116 @default.
- W2094698052 cites W2130821185 @default.
- W2094698052 cites W2134584352 @default.
- W2094698052 cites W2143981217 @default.
- W2094698052 cites W2169655552 @default.
- W2094698052 cites W2169715159 @default.
- W2094698052 cites W2949990181 @default.
- W2094698052 cites W2950635570 @default.
- W2094698052 cites W2951138400 @default.
- W2094698052 cites W2951291033 @default.
- W2094698052 cites W2951552801 @default.
- W2094698052 doi "https://doi.org/10.1039/b812000e" @default.
- W2094698052 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19551192" @default.
- W2094698052 hasPublicationYear "2009" @default.
- W2094698052 type Work @default.
- W2094698052 sameAs 2094698052 @default.
- W2094698052 citedByCount "10" @default.
- W2094698052 countsByYear W20946980522012 @default.
- W2094698052 countsByYear W20946980522013 @default.
- W2094698052 countsByYear W20946980522014 @default.
- W2094698052 countsByYear W20946980522018 @default.
- W2094698052 crossrefType "journal-article" @default.
- W2094698052 hasAuthorship W2094698052A5019406946 @default.
- W2094698052 hasAuthorship W2094698052A5023972426 @default.