Matches in SemOpenAlex for { <https://semopenalex.org/work/W2094752017> ?p ?o ?g. }
- W2094752017 endingPage "29" @default.
- W2094752017 startingPage "11" @default.
- W2094752017 abstract "A Holocene lake record from northeastern New Zealand provides a detailed record of environmental controls on upper watershed sedimentation, and is proximal to the Waipaoa MARGINS Source-to-Sink focus site. In that context, Lake Tutira in Hawke's Bay was cored in 2003 to recover a complete sedimentary record since the lake's formation ca 7.2 ka. The 27.14 m-long core contains alternating lithotypes that are sedimentary responses to lacustrine organic accumulation, normal to severe rainfalls, earthquakes and volcanism. A diatom allochthonous ranking scheme, pollen counts, and C and N percentages were used to identify intra-lake and watershed-derived storm deposits and modes of lithotype deposition. The lithotypes and depositional modes are: tephras (volcanic airfall); organic-rich mud (algal-rich lake sedimentation); massive to weakly graded, brown silty clay beds (homogenites and redeposited lake sediments); grey, graded sandy mud beds (intense storm-delivered sediment); and, thin yellow clay layers (run-off from small storms). Using 12 tephras and 3 radiocarbon ages to provide a chronology, the long-term sedimentation rate is ca 3.3 mm/year, which increases to > 10 mm/year following European colonisation. Storm beds occur in response to rainfall events, with no obvious correlation to El Niño-Southern Oscillation polarity or strength. Moreover, no single climate index appears to correlate strongly with the historic rainfall event record. Having characterised and identified storm-beds over the lake's history, a hindcast relationship implies that around 53 pre-historic storms occurred with a magnitude similar to the severe Cyclone Bola event of 1988, plus 7 potentially larger storm events. Despite the prominence of storm beds, a summation of the total percent thickness as an indication of the relative modes of emplacement for each lithotype shows that proportionally, the balance of intra-lake versus storm sources preserved in the lake bed is 69% and 26%, respectively. As well as storms, lake sedimentation is strongly influenced by earthquakes that destabilize the terrigenous, sediment-laden lake margins to generate homogenites, represented by the brown silty clay beds. These deposits tend to be thicker after a hiatus in seismic activity and after sustained periods of lake-margin loading, as inferred from the occurrence of thick graded storm beds. Comparison with marine records on the adjacent continental margin suggests that more terrestrial events are captured in the lake record, due to: (i) close hillslope–lake connectivity, with little intervening storage of sediment compared with the Waipaoa sedimentary system; and, (ii) the preservation of event stratigraphy at Tutira compared to its reduced preservation in the dynamic marine environment. Only major storms such as Cyclone Bola leave an imprint traceable to the ocean, whereas identifiable sedimentary responses to individual earthquakes are localized, although through landscape preconditioning and sediment production they contribute to the overall high terrigenous input to the ocean. In contrast, low-frequency, high magnitude perturbations (volcanic eruptions, European deforestation) are preserved through the Source-to-Sink sedimentary system, consistent with earlier hypotheses." @default.
- W2094752017 created "2016-06-24" @default.
- W2094752017 creator A5003891757 @default.
- W2094752017 creator A5020948225 @default.
- W2094752017 creator A5022525117 @default.
- W2094752017 creator A5026153380 @default.
- W2094752017 creator A5028067186 @default.
- W2094752017 creator A5029740399 @default.
- W2094752017 creator A5039749301 @default.
- W2094752017 creator A5044514948 @default.
- W2094752017 creator A5058026876 @default.
- W2094752017 creator A5068087996 @default.
- W2094752017 creator A5068318889 @default.
- W2094752017 date "2010-04-01" @default.
- W2094752017 modified "2023-10-01" @default.
- W2094752017 title "Holocene sedimentary record from Lake Tutira: A template for upland watershed erosion proximal to the Waipaoa Sedimentary System, northeastern New Zealand" @default.
- W2094752017 cites W1575688672 @default.
- W2094752017 cites W1949157007 @default.
- W2094752017 cites W1980859148 @default.
- W2094752017 cites W1981836083 @default.
- W2094752017 cites W1982729439 @default.
- W2094752017 cites W1988191164 @default.
- W2094752017 cites W1990423817 @default.
- W2094752017 cites W1994347390 @default.
- W2094752017 cites W1998270225 @default.
- W2094752017 cites W2000415580 @default.
- W2094752017 cites W2000632338 @default.
- W2094752017 cites W2001832593 @default.
- W2094752017 cites W2006461274 @default.
- W2094752017 cites W2011189655 @default.
- W2094752017 cites W2011299446 @default.
- W2094752017 cites W2012103907 @default.
- W2094752017 cites W2013579961 @default.
- W2094752017 cites W2028126209 @default.
- W2094752017 cites W2031962798 @default.
- W2094752017 cites W2036891138 @default.
- W2094752017 cites W2037981373 @default.
- W2094752017 cites W2041536702 @default.
- W2094752017 cites W2043041615 @default.
- W2094752017 cites W2043822529 @default.
- W2094752017 cites W2045419467 @default.
- W2094752017 cites W2047364685 @default.
- W2094752017 cites W2048144396 @default.
- W2094752017 cites W2048690726 @default.
- W2094752017 cites W2049436412 @default.
- W2094752017 cites W2050098803 @default.
- W2094752017 cites W2050192719 @default.
- W2094752017 cites W2055864797 @default.
- W2094752017 cites W2066111750 @default.
- W2094752017 cites W2066402172 @default.
- W2094752017 cites W2067541303 @default.
- W2094752017 cites W2086055032 @default.
- W2094752017 cites W2087360401 @default.
- W2094752017 cites W2095175055 @default.
- W2094752017 cites W2095535705 @default.
- W2094752017 cites W2107075839 @default.
- W2094752017 cites W2107806245 @default.
- W2094752017 cites W2108228607 @default.
- W2094752017 cites W2119136473 @default.
- W2094752017 cites W2125634020 @default.
- W2094752017 cites W2125896148 @default.
- W2094752017 cites W2134904696 @default.
- W2094752017 cites W2145905489 @default.
- W2094752017 cites W2150598680 @default.
- W2094752017 cites W2153747804 @default.
- W2094752017 cites W2154877554 @default.
- W2094752017 cites W2163199010 @default.
- W2094752017 cites W2173528477 @default.
- W2094752017 cites W3124793442 @default.
- W2094752017 cites W3176499286 @default.
- W2094752017 doi "https://doi.org/10.1016/j.margeo.2009.10.022" @default.
- W2094752017 hasPublicationYear "2010" @default.
- W2094752017 type Work @default.
- W2094752017 sameAs 2094752017 @default.
- W2094752017 citedByCount "36" @default.
- W2094752017 countsByYear W20947520172012 @default.
- W2094752017 countsByYear W20947520172013 @default.
- W2094752017 countsByYear W20947520172014 @default.
- W2094752017 countsByYear W20947520172015 @default.
- W2094752017 countsByYear W20947520172016 @default.
- W2094752017 countsByYear W20947520172018 @default.
- W2094752017 countsByYear W20947520172019 @default.
- W2094752017 countsByYear W20947520172020 @default.
- W2094752017 countsByYear W20947520172021 @default.
- W2094752017 crossrefType "journal-article" @default.
- W2094752017 hasAuthorship W2094752017A5003891757 @default.
- W2094752017 hasAuthorship W2094752017A5020948225 @default.
- W2094752017 hasAuthorship W2094752017A5022525117 @default.
- W2094752017 hasAuthorship W2094752017A5026153380 @default.
- W2094752017 hasAuthorship W2094752017A5028067186 @default.
- W2094752017 hasAuthorship W2094752017A5029740399 @default.
- W2094752017 hasAuthorship W2094752017A5039749301 @default.
- W2094752017 hasAuthorship W2094752017A5044514948 @default.
- W2094752017 hasAuthorship W2094752017A5058026876 @default.
- W2094752017 hasAuthorship W2094752017A5068087996 @default.
- W2094752017 hasAuthorship W2094752017A5068318889 @default.
- W2094752017 hasConcept C100134115 @default.
- W2094752017 hasConcept C105306849 @default.