Matches in SemOpenAlex for { <https://semopenalex.org/work/W2094753536> ?p ?o ?g. }
- W2094753536 endingPage "206" @default.
- W2094753536 startingPage "171" @default.
- W2094753536 abstract "The trust-region problem, which minimizes a nonconvex quadratic function over a ball, is a key subproblem in trust-region methods for solving nonlinear optimization problems. It enjoys many attractive properties such as an exact semi-definite linear programming relaxation (SDP-relaxation) and strong duality. Unfortunately, such properties do not, in general, hold for an extended trust-region problem having extra linear constraints. This paper shows that two useful and powerful features of the classical trust-region problem continue to hold for an extended trust-region problem with linear inequality constraints under a new dimension condition. First, we establish that the class of extended trust-region problems has an exact SDP-relaxation, which holds without the Slater constraint qualification. This is achieved by proving that a system of quadratic and affine functions involved in the model satisfies a range-convexity whenever the dimension condition is fulfilled. Second, we show that the dimension condition together with the Slater condition ensures that a set of combined first and second-order Lagrange multiplier conditions is necessary and sufficient for global optimality of the extended trust-region problem and consequently for strong duality. Through simple examples we also provide an insightful account of our development from SDP-relaxation to strong duality. Finally, we show that the dimension condition is easily satisfied for the extended trust-region model that arises from the reformulation of a robust least squares problem (LSP) as well as a robust second order cone programming model problem (SOCP) as an equivalent semi-definite linear programming problem. This leads us to conclude that, under mild assumptions, solving a robust LSP or SOCP under matrix-norm uncertainty or polyhedral uncertainty is equivalent to solving a semi-definite linear programming problem and so, their solutions can be validated in polynomial time." @default.
- W2094753536 created "2016-06-24" @default.
- W2094753536 creator A5025579166 @default.
- W2094753536 creator A5026027785 @default.
- W2094753536 date "2013-09-26" @default.
- W2094753536 modified "2023-10-17" @default.
- W2094753536 title "Trust-region problems with linear inequality constraints: exact SDP relaxation, global optimality and robust optimization" @default.
- W2094753536 cites W147998453 @default.
- W2094753536 cites W1522995151 @default.
- W2094753536 cites W1968745099 @default.
- W2094753536 cites W1989033306 @default.
- W2094753536 cites W2005037112 @default.
- W2094753536 cites W2009923109 @default.
- W2094753536 cites W2010364290 @default.
- W2094753536 cites W2010724422 @default.
- W2094753536 cites W2025212843 @default.
- W2094753536 cites W2048679451 @default.
- W2094753536 cites W2052538354 @default.
- W2094753536 cites W2058387991 @default.
- W2094753536 cites W2071439977 @default.
- W2094753536 cites W2074859470 @default.
- W2094753536 cites W2091480518 @default.
- W2094753536 cites W2091850740 @default.
- W2094753536 cites W2093790790 @default.
- W2094753536 cites W2102426156 @default.
- W2094753536 cites W2108927308 @default.
- W2094753536 cites W2110540077 @default.
- W2094753536 cites W2113432563 @default.
- W2094753536 cites W2118333298 @default.
- W2094753536 cites W2127018466 @default.
- W2094753536 cites W2131116400 @default.
- W2094753536 cites W2140214428 @default.
- W2094753536 cites W4250845939 @default.
- W2094753536 cites W4251616545 @default.
- W2094753536 doi "https://doi.org/10.1007/s10107-013-0716-2" @default.
- W2094753536 hasPublicationYear "2013" @default.
- W2094753536 type Work @default.
- W2094753536 sameAs 2094753536 @default.
- W2094753536 citedByCount "82" @default.
- W2094753536 countsByYear W20947535362013 @default.
- W2094753536 countsByYear W20947535362014 @default.
- W2094753536 countsByYear W20947535362015 @default.
- W2094753536 countsByYear W20947535362016 @default.
- W2094753536 countsByYear W20947535362017 @default.
- W2094753536 countsByYear W20947535362018 @default.
- W2094753536 countsByYear W20947535362019 @default.
- W2094753536 countsByYear W20947535362020 @default.
- W2094753536 countsByYear W20947535362021 @default.
- W2094753536 countsByYear W20947535362022 @default.
- W2094753536 countsByYear W20947535362023 @default.
- W2094753536 crossrefType "journal-article" @default.
- W2094753536 hasAuthorship W2094753536A5025579166 @default.
- W2094753536 hasAuthorship W2094753536A5026027785 @default.
- W2094753536 hasBestOaLocation W20947535362 @default.
- W2094753536 hasConcept C101901036 @default.
- W2094753536 hasConcept C106159729 @default.
- W2094753536 hasConcept C114614502 @default.
- W2094753536 hasConcept C118615104 @default.
- W2094753536 hasConcept C126255220 @default.
- W2094753536 hasConcept C137836250 @default.
- W2094753536 hasConcept C15744967 @default.
- W2094753536 hasConcept C162324750 @default.
- W2094753536 hasConcept C163863214 @default.
- W2094753536 hasConcept C178635117 @default.
- W2094753536 hasConcept C202444582 @default.
- W2094753536 hasConcept C2776029896 @default.
- W2094753536 hasConcept C2778023678 @default.
- W2094753536 hasConcept C33676613 @default.
- W2094753536 hasConcept C33923547 @default.
- W2094753536 hasConcept C38652104 @default.
- W2094753536 hasConcept C41008148 @default.
- W2094753536 hasConcept C41045048 @default.
- W2094753536 hasConcept C72134830 @default.
- W2094753536 hasConcept C77805123 @default.
- W2094753536 hasConcept C89109886 @default.
- W2094753536 hasConcept C92757383 @default.
- W2094753536 hasConceptScore W2094753536C101901036 @default.
- W2094753536 hasConceptScore W2094753536C106159729 @default.
- W2094753536 hasConceptScore W2094753536C114614502 @default.
- W2094753536 hasConceptScore W2094753536C118615104 @default.
- W2094753536 hasConceptScore W2094753536C126255220 @default.
- W2094753536 hasConceptScore W2094753536C137836250 @default.
- W2094753536 hasConceptScore W2094753536C15744967 @default.
- W2094753536 hasConceptScore W2094753536C162324750 @default.
- W2094753536 hasConceptScore W2094753536C163863214 @default.
- W2094753536 hasConceptScore W2094753536C178635117 @default.
- W2094753536 hasConceptScore W2094753536C202444582 @default.
- W2094753536 hasConceptScore W2094753536C2776029896 @default.
- W2094753536 hasConceptScore W2094753536C2778023678 @default.
- W2094753536 hasConceptScore W2094753536C33676613 @default.
- W2094753536 hasConceptScore W2094753536C33923547 @default.
- W2094753536 hasConceptScore W2094753536C38652104 @default.
- W2094753536 hasConceptScore W2094753536C41008148 @default.
- W2094753536 hasConceptScore W2094753536C41045048 @default.
- W2094753536 hasConceptScore W2094753536C72134830 @default.
- W2094753536 hasConceptScore W2094753536C77805123 @default.
- W2094753536 hasConceptScore W2094753536C89109886 @default.
- W2094753536 hasConceptScore W2094753536C92757383 @default.