Matches in SemOpenAlex for { <https://semopenalex.org/work/W2094753623> ?p ?o ?g. }
- W2094753623 abstract "This paper presents the development of next-generation prediction models for the flow number of dense asphalt–aggregate mixtures via an innovative machine learning approach. New nonlinear models were developed to predict the flow number using two robust machine learning techniques, called linear genetic programming (LGP) and artificial neural network (ANN). The flow number of Marshall specimens was formulated in terms of percentages of coarse aggregate, filler, bitumen, air voids, voids in mineral aggregate, and Marshall quotient. An experimental database containing 118 test results for Marshall specimens was used for the development of the models. Validity of the models was verified using parts of laboratory data that were not involved in the calibration process. The statistical measures of coefficient of determination, coefficient of efficiency, root-mean squared error, and mean absolute error were used to evaluate the performance of the models. Further, a multivariable least-squares regression (MLSR) analysis was carried out to benchmark the machine learning–based models against a classical approach. Sensitivity and parametric analyses were conducted and discussed. Given the results, the LGP and ANN models accurately characterize the flow number of asphalt mixtures. The LGP design equation reaches a comparable performance with the ANN model. The proposed models outperform the MLSR and other existing machine learning–based models for the flow number of asphalt mixtures." @default.
- W2094753623 created "2016-06-24" @default.
- W2094753623 creator A5006501027 @default.
- W2094753623 creator A5024869573 @default.
- W2094753623 creator A5039341855 @default.
- W2094753623 creator A5081817597 @default.
- W2094753623 date "2015-12-01" @default.
- W2094753623 modified "2023-09-27" @default.
- W2094753623 title "Next-Generation Models for Evaluation of the Flow Number of Asphalt Mixtures" @default.
- W2094753623 cites W1969246162 @default.
- W2094753623 cites W1971506732 @default.
- W2094753623 cites W1972114184 @default.
- W2094753623 cites W1987443231 @default.
- W2094753623 cites W1989840401 @default.
- W2094753623 cites W1999338295 @default.
- W2094753623 cites W2001917503 @default.
- W2094753623 cites W2004945692 @default.
- W2094753623 cites W2010225637 @default.
- W2094753623 cites W2011580004 @default.
- W2094753623 cites W2018912860 @default.
- W2094753623 cites W2021752501 @default.
- W2094753623 cites W2022695033 @default.
- W2094753623 cites W2033264180 @default.
- W2094753623 cites W2040622309 @default.
- W2094753623 cites W2050045277 @default.
- W2094753623 cites W2057652484 @default.
- W2094753623 cites W2058224488 @default.
- W2094753623 cites W2059586708 @default.
- W2094753623 cites W2063232232 @default.
- W2094753623 cites W2065209193 @default.
- W2094753623 cites W2065758442 @default.
- W2094753623 cites W2069968492 @default.
- W2094753623 cites W2076165558 @default.
- W2094753623 cites W2076836286 @default.
- W2094753623 cites W2079958690 @default.
- W2094753623 cites W2082433018 @default.
- W2094753623 cites W2086348228 @default.
- W2094753623 cites W2086877268 @default.
- W2094753623 cites W2087661061 @default.
- W2094753623 cites W2089000311 @default.
- W2094753623 cites W2091639982 @default.
- W2094753623 cites W2103496339 @default.
- W2094753623 cites W2104565172 @default.
- W2094753623 cites W2105887011 @default.
- W2094753623 cites W2107899042 @default.
- W2094753623 cites W2114144966 @default.
- W2094753623 cites W2138364347 @default.
- W2094753623 cites W2153086765 @default.
- W2094753623 cites W4233267086 @default.
- W2094753623 cites W4238753141 @default.
- W2094753623 cites W4300402905 @default.
- W2094753623 doi "https://doi.org/10.1061/(asce)gm.1943-5622.0000483" @default.
- W2094753623 hasPublicationYear "2015" @default.
- W2094753623 type Work @default.
- W2094753623 sameAs 2094753623 @default.
- W2094753623 citedByCount "9" @default.
- W2094753623 countsByYear W20947536232018 @default.
- W2094753623 countsByYear W20947536232019 @default.
- W2094753623 countsByYear W20947536232020 @default.
- W2094753623 countsByYear W20947536232021 @default.
- W2094753623 countsByYear W20947536232022 @default.
- W2094753623 crossrefType "journal-article" @default.
- W2094753623 hasAuthorship W2094753623A5006501027 @default.
- W2094753623 hasAuthorship W2094753623A5024869573 @default.
- W2094753623 hasAuthorship W2094753623A5039341855 @default.
- W2094753623 hasAuthorship W2094753623A5081817597 @default.
- W2094753623 hasConcept C105795698 @default.
- W2094753623 hasConcept C110332635 @default.
- W2094753623 hasConcept C117251300 @default.
- W2094753623 hasConcept C119857082 @default.
- W2094753623 hasConcept C122383733 @default.
- W2094753623 hasConcept C128990827 @default.
- W2094753623 hasConcept C139945424 @default.
- W2094753623 hasConcept C154945302 @default.
- W2094753623 hasConcept C159985019 @default.
- W2094753623 hasConcept C165838908 @default.
- W2094753623 hasConcept C168056786 @default.
- W2094753623 hasConcept C192562407 @default.
- W2094753623 hasConcept C2524010 @default.
- W2094753623 hasConcept C33923547 @default.
- W2094753623 hasConcept C38349280 @default.
- W2094753623 hasConcept C41008148 @default.
- W2094753623 hasConcept C4679612 @default.
- W2094753623 hasConcept C48921125 @default.
- W2094753623 hasConcept C50644808 @default.
- W2094753623 hasConceptScore W2094753623C105795698 @default.
- W2094753623 hasConceptScore W2094753623C110332635 @default.
- W2094753623 hasConceptScore W2094753623C117251300 @default.
- W2094753623 hasConceptScore W2094753623C119857082 @default.
- W2094753623 hasConceptScore W2094753623C122383733 @default.
- W2094753623 hasConceptScore W2094753623C128990827 @default.
- W2094753623 hasConceptScore W2094753623C139945424 @default.
- W2094753623 hasConceptScore W2094753623C154945302 @default.
- W2094753623 hasConceptScore W2094753623C159985019 @default.
- W2094753623 hasConceptScore W2094753623C165838908 @default.
- W2094753623 hasConceptScore W2094753623C168056786 @default.
- W2094753623 hasConceptScore W2094753623C192562407 @default.
- W2094753623 hasConceptScore W2094753623C2524010 @default.
- W2094753623 hasConceptScore W2094753623C33923547 @default.
- W2094753623 hasConceptScore W2094753623C38349280 @default.