Matches in SemOpenAlex for { <https://semopenalex.org/work/W2094844841> ?p ?o ?g. }
- W2094844841 endingPage "1052" @default.
- W2094844841 startingPage "1040" @default.
- W2094844841 abstract "ConspectusOwing to the prevalence of nitrogen-containing compounds in functional materials, natural products and important pharmaceutical agents, chemists have actively searched for the development of efficient and selective methodologies allowing for the facile construction of carbon–nitrogen bonds. While metal-catalyzed C–N cross-coupling reactions have been established as one of the most general protocols for C–N bond formation, these methods require starting materials equipped with functional groups such as (hetero)aryl halides or their equivalents, thus generating stoichiometric amounts of halide salts as byproducts. To address this aspect, a transition-metal-catalyzed direct C–H amination approach has emerged as a step- and atom-economical alternative to the conventional C–N cross-coupling reactions. However, despite the significant recent advances in metal-mediated direct C–H amination reactions, most available procedures need harsh conditions requiring stoichiometric external oxidants. In this context, we were curious to see whether a transition-metal-catalyzed mild C–H amination protocol could be achieved using organic azides as the amino source. We envisaged that a dual role of organic azides as an environmentally benign amino source and also as an internal oxidant via N–N2 bond cleavage would be key to develop efficient C–H amination reactions employing azides. An additional advantage of this approach was anticipated: that a sole byproduct is molecular nitrogen (N2) under the perspective catalytic conditions.This Account mainly describes our research efforts on the development of rhodium- and iridium-catalyzed direct C–H amination reactions with organic azides. Under our initially optimized Rh(III)-catalyzed amination conditions, not only sulfonyl azides but also aryl- and alkyl azides could be utilized as facile amino sources in reaction with various types of C(sp2)–H bonds bearing such directing groups as pyridine, amide, or ketoxime. More recently, a new catalyst system using Ir(III) species was developed for the direct C–H amidation of arenes and alkenes with acyl azides under exceptionally mild conditions. As a natural extension, amidation of primary C(sp3)–H bonds could also be realized on the basis of the superior activity of the Cp*Ir(III) catalyst. Mechanistic investigations revealed that a catalytic cycle is operated mainly in three stages: (i) chelation-assisted metallacycle formation via C–H bond cleavage; (ii) C–N bond formation through the in situ generation of a metal–nitrenoid intermediate followed by the insertion of an imido moiety to the metal carbon bond; (iii) product release via protodemetalation with the concomitant catalyst regeneration. In addition, this Account also summarizes the recent advances in the ruthenium- and cobalt-catalyzed amination reactions using organic azides, developed by our own and other groups. Comparative studies on the relative performance of those catalytic systems are briefly described." @default.
- W2094844841 created "2016-06-24" @default.
- W2094844841 creator A5007832893 @default.
- W2094844841 creator A5008383067 @default.
- W2094844841 creator A5086637390 @default.
- W2094844841 date "2015-03-30" @default.
- W2094844841 modified "2023-10-01" @default.
- W2094844841 title "Transition-Metal-Catalyzed C–N Bond Forming Reactions Using Organic Azides as the Nitrogen Source: A Journey for the Mild and Versatile C–H Amination" @default.
- W2094844841 cites W1510912478 @default.
- W2094844841 cites W1902427796 @default.
- W2094844841 cites W1917073772 @default.
- W2094844841 cites W1967254706 @default.
- W2094844841 cites W1969885133 @default.
- W2094844841 cites W1971698744 @default.
- W2094844841 cites W1976801308 @default.
- W2094844841 cites W1978353169 @default.
- W2094844841 cites W1992654553 @default.
- W2094844841 cites W1995898999 @default.
- W2094844841 cites W2001188508 @default.
- W2094844841 cites W2003610491 @default.
- W2094844841 cites W2003754630 @default.
- W2094844841 cites W2003876494 @default.
- W2094844841 cites W2017847164 @default.
- W2094844841 cites W2019052777 @default.
- W2094844841 cites W2019568660 @default.
- W2094844841 cites W2025953209 @default.
- W2094844841 cites W2026875674 @default.
- W2094844841 cites W2032385683 @default.
- W2094844841 cites W2033442130 @default.
- W2094844841 cites W2038452922 @default.
- W2094844841 cites W2039397684 @default.
- W2094844841 cites W2043011398 @default.
- W2094844841 cites W2044071145 @default.
- W2094844841 cites W2045516689 @default.
- W2094844841 cites W2054785509 @default.
- W2094844841 cites W2059376441 @default.
- W2094844841 cites W2060872673 @default.
- W2094844841 cites W2060912642 @default.
- W2094844841 cites W2060953989 @default.
- W2094844841 cites W2061848553 @default.
- W2094844841 cites W2067445003 @default.
- W2094844841 cites W2067904223 @default.
- W2094844841 cites W2077782725 @default.
- W2094844841 cites W2082909540 @default.
- W2094844841 cites W2083790594 @default.
- W2094844841 cites W2088417761 @default.
- W2094844841 cites W2090280264 @default.
- W2094844841 cites W2092172784 @default.
- W2094844841 cites W2092361417 @default.
- W2094844841 cites W2092638601 @default.
- W2094844841 cites W2094680700 @default.
- W2094844841 cites W2104093225 @default.
- W2094844841 cites W2104742517 @default.
- W2094844841 cites W2111876916 @default.
- W2094844841 cites W2118797748 @default.
- W2094844841 cites W2129936280 @default.
- W2094844841 cites W2135261637 @default.
- W2094844841 cites W2145795138 @default.
- W2094844841 cites W2146049267 @default.
- W2094844841 cites W2147925478 @default.
- W2094844841 cites W2151864089 @default.
- W2094844841 cites W2154210943 @default.
- W2094844841 cites W2156032117 @default.
- W2094844841 cites W2157892051 @default.
- W2094844841 cites W2162047917 @default.
- W2094844841 cites W2162157647 @default.
- W2094844841 cites W2165352032 @default.
- W2094844841 cites W2167149302 @default.
- W2094844841 cites W2313737475 @default.
- W2094844841 cites W2317383270 @default.
- W2094844841 cites W2318708152 @default.
- W2094844841 cites W2321928492 @default.
- W2094844841 cites W2323189499 @default.
- W2094844841 cites W2325047454 @default.
- W2094844841 cites W2326200481 @default.
- W2094844841 cites W2330273110 @default.
- W2094844841 cites W2331452414 @default.
- W2094844841 cites W2332984108 @default.
- W2094844841 cites W2485799123 @default.
- W2094844841 cites W4250686087 @default.
- W2094844841 doi "https://doi.org/10.1021/acs.accounts.5b00020" @default.
- W2094844841 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25821998" @default.
- W2094844841 hasPublicationYear "2015" @default.
- W2094844841 type Work @default.
- W2094844841 sameAs 2094844841 @default.
- W2094844841 citedByCount "800" @default.
- W2094844841 countsByYear W20948448412015 @default.
- W2094844841 countsByYear W20948448412016 @default.
- W2094844841 countsByYear W20948448412017 @default.
- W2094844841 countsByYear W20948448412018 @default.
- W2094844841 countsByYear W20948448412019 @default.
- W2094844841 countsByYear W20948448412020 @default.
- W2094844841 countsByYear W20948448412021 @default.
- W2094844841 countsByYear W20948448412022 @default.
- W2094844841 countsByYear W20948448412023 @default.
- W2094844841 crossrefType "journal-article" @default.
- W2094844841 hasAuthorship W2094844841A5007832893 @default.
- W2094844841 hasAuthorship W2094844841A5008383067 @default.