Matches in SemOpenAlex for { <https://semopenalex.org/work/W2094877150> ?p ?o ?g. }
- W2094877150 endingPage "359" @default.
- W2094877150 startingPage "311" @default.
- W2094877150 abstract "As has been shown in recent publications, classical chaos leads to complex irreducible representation of the evolution operator (such as the Perron-Frobenius operator for chaotic maps). Complex means that time symmetry is broken (appearance of semi-groups) and irreducible that the representation can only be implemented by distribution functions (and not by trajectories). A somewhat similar situation occurs in Hamiltonian nonintegrable systems with continuous spectrum (“Large Poincaré Systems” LPS), both in classical and quantum mechanics. The elimination of Poincarés divergences requires an extended formulationof dynamics on the level of distribution functions (or density matrices). This applies already to simple situations such as potential scattering in the case of persistent interactions. There appear characteristic delta-function singularities in the density matrices in momentum representation. Our theory predicts then dissipative processes corresponding to the destruction of invariants of motion throuh Poincaré resonances. This prediction is quantitative agreement with extensive numerical simulations presented here. We concentrate in this paper on potential scattering. We discuss also briefly a simple model of a many-body system (the so called “perfect Lorentz gas”). In both cases we obtain irreducible spectral representations which we consider as the signature of “chaos”. We solve the eigenvalue problem for the Liouville-von Neumann operator for the class of singular density matrices corresponding to persistent scattering. This leads to a complex spectral representation in which cross sections appear as eigenvalues. Our previous results [see our previous paper in Chaos, Solitons & Fractals (1991)] obtained by “subdynamics theory” are now derived through the solution of the eigenvalue problem for singular distributions. Our results can be tested by numerical simulations. Again the agreement is excellent. Note that our results cannotbe derived from conventional quantum theory for probability amplitudes. We have therefore here a simple example of a quantum theory which goes beyond the traditional Schrödinger formulation. As already mentioned, our theory is formulated on the level of density matrices. Wave functions corresponding to persistent scattering (and therefore to singular density matrices) “collapse” as the result of Poincaré divergences. We obtain therefore a unified formulation of quantum theory without any appeal to extra dynamical concepts (such as many worlds, influence of environment,…). The appearance of chaos for LPS through the formulation of complex irreducible representations on the level of density matrices solves therefore not only the “time paradox” as it introduces time symmetry breaking on the microscopic level, but eliminates also the old standing epistemological problems of quantum theory associated to measurement and to decoherence." @default.
- W2094877150 created "2016-06-24" @default.
- W2094877150 creator A5034255098 @default.
- W2094877150 creator A5089585254 @default.
- W2094877150 date "1994-03-01" @default.
- W2094877150 modified "2023-10-15" @default.
- W2094877150 title "Quantum chaos, complex spectral representations and time-symmetry breaking" @default.
- W2094877150 cites W1495589787 @default.
- W2094877150 cites W1968455371 @default.
- W2094877150 cites W1995812643 @default.
- W2094877150 cites W2012987256 @default.
- W2094877150 cites W2015259555 @default.
- W2094877150 cites W2018580164 @default.
- W2094877150 cites W2020936096 @default.
- W2094877150 cites W2022769353 @default.
- W2094877150 cites W2028983546 @default.
- W2094877150 cites W2029152384 @default.
- W2094877150 cites W2029175272 @default.
- W2094877150 cites W2029951589 @default.
- W2094877150 cites W2045533438 @default.
- W2094877150 cites W2047085243 @default.
- W2094877150 cites W2048657459 @default.
- W2094877150 cites W2051912867 @default.
- W2094877150 cites W2054348419 @default.
- W2094877150 cites W2058997537 @default.
- W2094877150 cites W2061379576 @default.
- W2094877150 cites W2079165713 @default.
- W2094877150 cites W2080363037 @default.
- W2094877150 cites W2087152636 @default.
- W2094877150 cites W2122920366 @default.
- W2094877150 doi "https://doi.org/10.1016/0960-0779(94)90050-7" @default.
- W2094877150 hasPublicationYear "1994" @default.
- W2094877150 type Work @default.
- W2094877150 sameAs 2094877150 @default.
- W2094877150 citedByCount "27" @default.
- W2094877150 countsByYear W20948771502014 @default.
- W2094877150 crossrefType "journal-article" @default.
- W2094877150 hasAuthorship W2094877150A5034255098 @default.
- W2094877150 hasAuthorship W2094877150A5089585254 @default.
- W2094877150 hasConcept C104317684 @default.
- W2094877150 hasConcept C121332964 @default.
- W2094877150 hasConcept C121864883 @default.
- W2094877150 hasConcept C126255220 @default.
- W2094877150 hasConcept C130787639 @default.
- W2094877150 hasConcept C136269434 @default.
- W2094877150 hasConcept C15184713 @default.
- W2094877150 hasConcept C158448853 @default.
- W2094877150 hasConcept C158693339 @default.
- W2094877150 hasConcept C17020691 @default.
- W2094877150 hasConcept C185592680 @default.
- W2094877150 hasConcept C191486275 @default.
- W2094877150 hasConcept C197247276 @default.
- W2094877150 hasConcept C33923547 @default.
- W2094877150 hasConcept C37914503 @default.
- W2094877150 hasConcept C55493867 @default.
- W2094877150 hasConcept C62520636 @default.
- W2094877150 hasConcept C67105901 @default.
- W2094877150 hasConcept C74650414 @default.
- W2094877150 hasConcept C84114770 @default.
- W2094877150 hasConcept C86339819 @default.
- W2094877150 hasConceptScore W2094877150C104317684 @default.
- W2094877150 hasConceptScore W2094877150C121332964 @default.
- W2094877150 hasConceptScore W2094877150C121864883 @default.
- W2094877150 hasConceptScore W2094877150C126255220 @default.
- W2094877150 hasConceptScore W2094877150C130787639 @default.
- W2094877150 hasConceptScore W2094877150C136269434 @default.
- W2094877150 hasConceptScore W2094877150C15184713 @default.
- W2094877150 hasConceptScore W2094877150C158448853 @default.
- W2094877150 hasConceptScore W2094877150C158693339 @default.
- W2094877150 hasConceptScore W2094877150C17020691 @default.
- W2094877150 hasConceptScore W2094877150C185592680 @default.
- W2094877150 hasConceptScore W2094877150C191486275 @default.
- W2094877150 hasConceptScore W2094877150C197247276 @default.
- W2094877150 hasConceptScore W2094877150C33923547 @default.
- W2094877150 hasConceptScore W2094877150C37914503 @default.
- W2094877150 hasConceptScore W2094877150C55493867 @default.
- W2094877150 hasConceptScore W2094877150C62520636 @default.
- W2094877150 hasConceptScore W2094877150C67105901 @default.
- W2094877150 hasConceptScore W2094877150C74650414 @default.
- W2094877150 hasConceptScore W2094877150C84114770 @default.
- W2094877150 hasConceptScore W2094877150C86339819 @default.
- W2094877150 hasIssue "3" @default.
- W2094877150 hasLocation W20948771501 @default.
- W2094877150 hasOpenAccess W2094877150 @default.
- W2094877150 hasPrimaryLocation W20948771501 @default.
- W2094877150 hasRelatedWork W1969108365 @default.
- W2094877150 hasRelatedWork W1992052222 @default.
- W2094877150 hasRelatedWork W2004382916 @default.
- W2094877150 hasRelatedWork W2063161885 @default.
- W2094877150 hasRelatedWork W2081148220 @default.
- W2094877150 hasRelatedWork W2087676601 @default.
- W2094877150 hasRelatedWork W2093214363 @default.
- W2094877150 hasRelatedWork W2094721528 @default.
- W2094877150 hasRelatedWork W2979499741 @default.
- W2094877150 hasRelatedWork W3098095488 @default.
- W2094877150 hasVolume "4" @default.
- W2094877150 isParatext "false" @default.
- W2094877150 isRetracted "false" @default.