Matches in SemOpenAlex for { <https://semopenalex.org/work/W2094896067> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2094896067 endingPage "655" @default.
- W2094896067 startingPage "637" @default.
- W2094896067 abstract "No AccessHistory of Key TechnologiesBlazing Gyros: The Evolution of Strapdown Inertial Navigation Technology for AircraftPaul G. SavagePaul G. SavageStrapdown Associates, Inc., Maple Plain, Minnesota 55359Search for more papers by this authorPublished Online:19 Mar 2013https://doi.org/10.2514/1.60211SectionsView Full TextPDFPDF Plus ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] MacKenzie D., Inventing Accuracy, MIT Press, Cambridge, MA, 1993, pp. 71–92, Chap. 2. Google Scholar[2] Minor J. W., “Low-Cost Strapdown-Down Inertial Systems,” AIAA/ION Guidance and Control Conference, Aug. 1965. Google Scholar[3] Eberlein A. J. and Savage P. G., “Strapdown Cost Trend Study and Forecast,” NASA Ames Research Center CR-137585, 1 Jan. 1975. Google Scholar[4] Shaw J. C., “Benefits of Strapdown over Gimbaled Systems for Aircraft Application,” IEEE National Aerospace & Electronics Conference (NAECON), May 1976. Google Scholar[5] Gilmore J. P., “Non-Orthogonal Gyro Configuration,” Massachusetts Inst. of Technology/Instrumentation Laboratory Rept. T-472, Jan. 1967. Google Scholar[6] Gilmore J. P. and Cooper R. J., “SIRU Development–Final Report, Volume 1, System Development,” Draper Lab., NASA CSDL-R-746, CR-136033, 1973. Google Scholar[7] Gilbert J. F., McIntyre M. D., Olbrechts G. R. and Shaw J. C., “Integrated Strapdown Air Data System,” U.S. Patent No. 4303978, 18 April 1980. Google Scholar[8] Hruby R. J. and Bjorkman W. S., “Flight Test Results of the Strapdown Hexad Inertial Reference Unit (SIRU),” NASA Ames Research Center TMX-73,223, July 1977. Google Scholar[9] Peterson R., “Advantages of Gimbaled Inertial Navigation Systems,” IEEE National Aerospace & Electronics Conference (NAECON), May 1976. Google Scholar[10] Klass P. J., “Ring Laser Device Performs Rate Gyro Angular Rate Sensor Functions,” Aviation Week and Space Technology, 11 Feb. 1963, pp. 98–103. AWSTAV 0005-2175 Google Scholar[11] Savage P. G., “Strapdown Sensors,” Strapdown Inertial Systems: Theory And Applications, NATO AGARD-LS-95, June 1978, Sec. 2. Google Scholar[12] Savage P. G., “Advances in Strapdown Sensors,” Advances in Strapdown Inertial Systems, NATO, AGARD-LS-133, 14–15 May 1984. Google Scholar[13] Warzynski R. R. and Ringo R. L., “The Evolution of ESG Technology,” 15th Meeting of the Guidance and Control Panel of AGARD, Florence, Italy, Oct. 1972, pp. 13-1–13-8. Google Scholar[14] Lawrence A., Modern Inertial Technology, Springer–Verlag, New York, 1993, pp. 93–147. CrossrefGoogle Scholar[15] Merhav S., Aerospace Sensor Systems and Applications, Springer–Verlag, New York, 1996, pp. 186–271. CrossrefGoogle Scholar[16] Sinkiewicz J. S., Feldman J. and Lory C. B., “Evaluation of Selected Strapdown Inertial Instruments and Pulse Torque Loops,” Final Rept., Vol. 1, Draper Lab., NASA CSDL R-286, CR-120427, July 1974. Google Scholar[17] Killpatrick J., “The Laser Gyro,” IEEE Spectrum, Vol. 4, No. 10, Oct. 1967, pp. 44–55. doi:https://doi.org/10.1109/MSPEC.1967.5217121 SPSAAL CrossrefGoogle Scholar[18] Aronowitz F., “Fundamentals of the Ring Laser Gyro,” Optical Gyros and Their Applications, AGARDograph Rept. 339, June 1999. Google Scholar[19] Aronowitz F. and Collins R. J., “Mode Coupling Due to Back Scattering in a HeNe Traveling Wave Ring Laser,” Applied Physics Letters, Vol. 9, No. 1, July 1966, pp. 55–58. doi:https://doi.org/10.1063/1.1754599 APPLAB 0003-6951 CrossrefGoogle Scholar[20] Morrison R., Levinson E. and Bryant B. L., “The SLIC-7 Laser Gyro Inertial Guidance System,” IEEE National Aerospace & Electronics Conference (NAECON), 1977; also Institute of Navigation National Aerospace Symposium, April 1976. Google Scholar[21] Morrison R., Levinson E. and McAdory R., “The SLIC-15 Laser Gyro IMU for Midcourse Missile Guidance,” Institute of Navigation National Aerospace Symposium, April 1976. Google Scholar[22] Feldman J., “Sperry ASLG 15 Laser-Gyro Performance and Error Model,” Charles Stark Draper Laboratory (CDCL) Rept. R-989, July 1976. Google Scholar[23] Rountree J. P., Burns J. E. and McAdory R. W., “Differential Laser Gyro Technology,” IEEE National Aerospace & Electronics Conference (NAECON), 1975. Google Scholar[24] Bresman J., Cook H. and Lysobey D., “Differential Laser Gyro Development,” Institute of Navigation National Aerospace Meeting, April 1976. Google Scholar[25] Stowell W. K., McAdory R. W. and Rountree J. P., “Differential Laser Gyro,” IEEE Southeast Conference, April 1976. Google Scholar[26] Smith I. and Dorschner T., “Clear-Path Four-Frequency for Ring Laser Gyros,” Journal of the Optical Society of America, Vol. 68, Oct. 1978, p. 1381. JOSAAH 0030-3941 Google Scholar[27] United Aircraft Corporate Systems Center, “A Study of Critical Computational Problems Associated with Strapdown Inertial Navigation Systems,” NASA Rept. CR-968, April 1968. Google Scholar[28] Savage P.G., “A New Second-Order Solution for Strapped-Down Attitude Computation,” AIAA Joint Automatic Control Conference, Aug. 1966. Google Scholar[29] Bortz J. E., “A New Concept in Strapdown Inertial Navigation,” Ph.D. Dissertation, Massachusetts Inst. of Technology, Cambridge, MA, June 1969. Google Scholar[30] Jordan J. W., “An Accurate Strapdown Direction Cosine Algorithm,” NASA TN-D-5384, Sept. 1969. Google Scholar[31] Savage P. G., “Strapdown System Algorithms,” Advances in Strapdown Inertial Systems, NATO, AGARD-LS-133, May 1984, Sec. 3. Google Scholar[32] Savage P. G., “Strapdown Inertial Navigation System Integration Algorithm Design Part 1: Attitude Algorithms,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 1, 1998, pp. 19–28. doi:https://doi.org/10.2514/2.4228 JGCDDT 0162-3192 LinkGoogle Scholar[33] Savage P. G., “Strapdown Inertial Navigation System Integration Algorithm Design Part 2: Velocity and Position Algorithms,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, 1998, pp. 208–221. doi:https://doi.org/10.2514/2.4242 JGCDDT 0162-3192 LinkGoogle Scholar[34] Roscoe K. M., “Equivalency Between Strapdown Inertial Navigation Coning and Sculling Integrals/Algorithms,” Journal of Guidance, Control, and Dynamics, Vol. 24, No. 2, 2001, pp. 201–205. doi:https://doi.org/10.2514/2.4718 JGCDDT 0162-3192 LinkGoogle Scholar[35] Savage P. G., Strapdown Analytics, 2nd ed., Strapdown Assoc., Maple Plain, MN, 2007. Google Scholar[36] Miller R., “A New Strapdown Attitude Algorithm,” Journal of Guidance, Control, and Dynamics, Vol. 6, No. 4, 1983, pp. 287–291. doi:https://doi.org/10.2514/3.19831 JGCDDT 0162-3192 LinkGoogle Scholar[37] Ignagni M. B., “Optimal Strapdown Attitude Integration Algorithms,” Journal of Guidance, Control, and Dynamics, Vol. 13, No. 2, 1990, pp. 363–369. doi:https://doi.org/10.2514/3.20558 JGCDDT 0162-3192 LinkGoogle Scholar[38] Ignagni M. B., “Efficient Class of Optimized Coning Compensation Algorithms,” Journal of Guidance, Control, and Dynamics, Vol. 19, No. 2, 1996, pp. 424–429. doi:https://doi.org/10.2514/3.21635 JGCDDT 0162-3192 LinkGoogle Scholar[39] Mark J. G. and Tazartes D. A., “Tuning of Coning Algorithms to Gyro Data Frequency Response Characteristics,” Journal of Guidance, Control, and Dynamics, Vol. 24, No. 4, 2001, pp. 641–647. doi:https://doi.org/10.2514/2.4770 JGCDDT 0162-3192 LinkGoogle Scholar[40] Savage P. G., “Coning Algorithm Design by Explicit Frequency Shaping,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 4, 2010, pp. 1123–1132. doi:https://doi.org/10.2514/1.47337 JGCDDT 0162-3192 LinkGoogle Scholar[41] Savage P. G., “Explicit Frequency Shaped Coning Algorithms for Pseudoconing Environments,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 3, 2011, pp. 774–782. doi:https://doi.org/10.2514/1.51600 JGCDDT 0162-3192 LinkGoogle Scholar[42] Podgorski T. J. and Thymian D. M., “Design and Development of the AA1300Ad02 Laser Gyro,” NASA Rept. CR-132261, pp. 10–11. Google Scholar[43] Savage P. G., “The Honeywell Laser Inertial Navigation System (LINS),” IEEE National Aerospace & Electronics Conference (NAECON), June 1975. Google Scholar[44] Savage P. G. and Ignagni M. B., “Honeywell Laser Inertial Navigation System (LINS) Test Results,” IEEE Ninth Joint Services Data Exchange Group for Inertial Systems, Nov. 1975. Google Scholar[45] Savage P. G., “Laser Gyros in Strapdown Inertial Navigation Systems,” IEEE Position Location and Navigation Symposium, Nov. 1976. Google Scholar[46] Duncan R. R., “MICRON–A Strapdown Inertial Navigator Using Miniature Electrostatic Gyros,” SAE Aerospace Control and Guidance Systems Committee, May 1974. Google Scholar[47] Fenner P. J., “Requirements, Applications, and Results of Strapdown Inertial Technology to Commercial Airplanes,” Advances in Strapdown Inertial Systems, NATO AGARD-LS-133, May 1984. Google Scholar[48] “RV ‘Flies’ Through On-The-Ground Tests”, Onan On The Road…, Vol. 3, Onan News, 1975, pp. 4–5. Google Scholar[49] Payne D. P., Shoaf R. B. and Koesters H. P., “Development Test of the Honeywell Laser Inertial Navigation System (LINS),” Central Inertial Guidance Test Facility, 6585th Test Group, Final Rept. ADTC-TR-75-74, Holloman AFB, Nov. 1975. Google Scholar[50] Bachman K. and Skoyles R., “Advanced Development Model Ring Laser Gyro Navigator, A-7E Aircraft Flight Test Results,” U.S. Naval Air Development Center Rept. NADC-80058-40, 15 Aug. 1980. Google Scholar[51] Bachman K. L., “Ring Laser Gyro Navigator (RLGN) Flight Test Results,” Navigation, Vol. 28 No. 3, 1981, pp. 214–223. NVGNAL 0028-1530 CrossrefGoogle Scholar[52] Savage P. G., “Calibration Procedures for Laser Gyro Strapdown Inertial Navigation Systems,” 9th Annual Electro-Optics/Laser Conference and Exhibition, Oct. 1977. Google Scholar[53] Miller J. M. and et al., “Micro Navigator (MICRON) Phase 2A Volume I – Technical Report,” AFAL-TR-75-210, Feb. 1976. Google Scholar[54] Volk C. H., Gillespie S. C., Mark J. G. and Tazartes D. A., “Multioscillator Ring Laser Gyroscopes and Their Applications,” Optical Gyros and Their Applications, AGARDograph Rept. 339, June 1999. Google Scholar[55] Savage P. G., Introduction to Strapdown Inertial Navigation Systems, 12th ed., Strapdown Assoc., Maple Plain, MN, 10 Jan. 2010, pp. 327A–327D. Google Scholar[56] Sebring D. L., Perdzock J. M. and Young J. T., “Application of Multifunction Strapdown Inertial System,” Advances in Strapdown Inertial Systems, NATO AGARD Lecture Series No. 133, May 1984, Sec. 8. Google Scholar Next article" @default.
- W2094896067 created "2016-06-24" @default.
- W2094896067 creator A5031285330 @default.
- W2094896067 date "2013-05-01" @default.
- W2094896067 modified "2023-09-23" @default.
- W2094896067 title "Blazing Gyros: The Evolution of Strapdown Inertial Navigation Technology for Aircraft" @default.
- W2094896067 cites W1643000131 @default.
- W2094896067 cites W189576683 @default.
- W2094896067 cites W1964860276 @default.
- W2094896067 cites W1974531087 @default.
- W2094896067 cites W2012641624 @default.
- W2094896067 cites W2023991343 @default.
- W2094896067 cites W2040346437 @default.
- W2094896067 cites W2042805490 @default.
- W2094896067 cites W2043201261 @default.
- W2094896067 cites W2065483486 @default.
- W2094896067 cites W2068313703 @default.
- W2094896067 cites W2086645586 @default.
- W2094896067 cites W2094994648 @default.
- W2094896067 cites W2149286606 @default.
- W2094896067 cites W4241511089 @default.
- W2094896067 cites W63109388 @default.
- W2094896067 doi "https://doi.org/10.2514/1.60211" @default.
- W2094896067 hasPublicationYear "2013" @default.
- W2094896067 type Work @default.
- W2094896067 sameAs 2094896067 @default.
- W2094896067 citedByCount "35" @default.
- W2094896067 countsByYear W20948960672014 @default.
- W2094896067 countsByYear W20948960672015 @default.
- W2094896067 countsByYear W20948960672016 @default.
- W2094896067 countsByYear W20948960672017 @default.
- W2094896067 countsByYear W20948960672018 @default.
- W2094896067 countsByYear W20948960672019 @default.
- W2094896067 countsByYear W20948960672020 @default.
- W2094896067 countsByYear W20948960672021 @default.
- W2094896067 countsByYear W20948960672022 @default.
- W2094896067 countsByYear W20948960672023 @default.
- W2094896067 crossrefType "journal-article" @default.
- W2094896067 hasAuthorship W2094896067A5031285330 @default.
- W2094896067 hasConcept C121332964 @default.
- W2094896067 hasConcept C127413603 @default.
- W2094896067 hasConcept C128651787 @default.
- W2094896067 hasConcept C146978453 @default.
- W2094896067 hasConcept C173386949 @default.
- W2094896067 hasConcept C178802073 @default.
- W2094896067 hasConcept C189096121 @default.
- W2094896067 hasConcept C41008148 @default.
- W2094896067 hasConcept C74650414 @default.
- W2094896067 hasConceptScore W2094896067C121332964 @default.
- W2094896067 hasConceptScore W2094896067C127413603 @default.
- W2094896067 hasConceptScore W2094896067C128651787 @default.
- W2094896067 hasConceptScore W2094896067C146978453 @default.
- W2094896067 hasConceptScore W2094896067C173386949 @default.
- W2094896067 hasConceptScore W2094896067C178802073 @default.
- W2094896067 hasConceptScore W2094896067C189096121 @default.
- W2094896067 hasConceptScore W2094896067C41008148 @default.
- W2094896067 hasConceptScore W2094896067C74650414 @default.
- W2094896067 hasIssue "3" @default.
- W2094896067 hasLocation W20948960671 @default.
- W2094896067 hasOpenAccess W2094896067 @default.
- W2094896067 hasPrimaryLocation W20948960671 @default.
- W2094896067 hasRelatedWork W2069570696 @default.
- W2094896067 hasRelatedWork W2162998946 @default.
- W2094896067 hasRelatedWork W2361925880 @default.
- W2094896067 hasRelatedWork W2364329597 @default.
- W2094896067 hasRelatedWork W2475167976 @default.
- W2094896067 hasRelatedWork W3112302614 @default.
- W2094896067 hasRelatedWork W3216463974 @default.
- W2094896067 hasRelatedWork W4226280613 @default.
- W2094896067 hasRelatedWork W4300961947 @default.
- W2094896067 hasRelatedWork W23037264 @default.
- W2094896067 hasVolume "36" @default.
- W2094896067 isParatext "false" @default.
- W2094896067 isRetracted "false" @default.
- W2094896067 magId "2094896067" @default.
- W2094896067 workType "article" @default.