Matches in SemOpenAlex for { <https://semopenalex.org/work/W209489986> ?p ?o ?g. }
- W209489986 abstract "Author(s): Quilodran, Rene | Advisor(s): Christ, Michael | Abstract: Whenever we have a bounded linear operator T:X → Y between two Banach spaces X, Y we can ask what nonzero elements x* ∈ X satisfy ||Tx*||=||T|| ||x*||. Such elements of X are called extremizers for the inequality ||Tx|| ≤ ||T|| ||x||. A sequence {xn}n ∈ ℕ in X satisfying ||xn||≤1 and ||Txn|| → ||T||, as n → ∞, is called an extremizing sequence. For extremizing sequences we can ask whether they are precompact after the application of symmetries of the operator T. We can also ask for the value of the operator norm of T, ||T||.The adjoint Fourier restriction operator associated to a hypersurface S with measure σ in ℝd, f ↦ (fσ)^, is known to be bounded from L2 to Lp in the case of the cone, the hyperboloid and the paraboloid in ℝd, for a certain range of exponents p ∈ [1,∞]. Existence and nonexistence of extremizers, precompactness of extremizing sequences, Euler-Lagrange equations for extremizers and best constants is what we study in the first three parts of this dissertation.In the first part we study the adjoint restriction inequality on the cone, Γ2⊆ ℝ3. We prove that an extremizing sequence for the inequality from L2(Γ2) to L6(ℝ3) is precompact up to the natural symmetries of the cone, dilations and Lorentz transformations.In the second part we study extremizers on the hyperboloid in dimensions 3 and 4. We prove that in both cases extremizers do not exist and compute the best constant in the adjoint Fourier restriction inequality.In the third part, in a joint work with Michael Christ, we consider the case of the paraboloid, or equivalently, Strichartz inequalities for the Shrodinger equation. It is shown there that a natural class of functions, the Gaussians, known to extremize the L2 → Lp adjoint Fourier restriction inequalities in dimensions 2 and 3 are no longer critical points, and thus are not extremizers, of the nonlinear functional associated to the Lq→ Lp inequalities for q ≠ 2. The case of mixed norms is also studied.In the last chapter we look at an incidence geometry problem, the problem of counting noncoplanar intersections of lines in ℝd. The problem can be seen as a discrete version of the Kakeya problem, an open problem in real analysis. There we prove a sharp upper bound for the number of transverse intersections of a collection of lines." @default.
- W209489986 created "2016-06-24" @default.
- W209489986 creator A5050741771 @default.
- W209489986 date "2012-01-01" @default.
- W209489986 modified "2023-09-26" @default.
- W209489986 title "On extremizers for adjoint Fourier restriction inequalities and a result in incidence geometry" @default.
- W209489986 cites W114491584 @default.
- W209489986 cites W1491966250 @default.
- W209489986 cites W1538169654 @default.
- W209489986 cites W1539895965 @default.
- W209489986 cites W1556192255 @default.
- W209489986 cites W1559907478 @default.
- W209489986 cites W1584610719 @default.
- W209489986 cites W1588528702 @default.
- W209489986 cites W1964275228 @default.
- W209489986 cites W1972038344 @default.
- W209489986 cites W1973556430 @default.
- W209489986 cites W1975715695 @default.
- W209489986 cites W1989991745 @default.
- W209489986 cites W1990305586 @default.
- W209489986 cites W1994132686 @default.
- W209489986 cites W1997424790 @default.
- W209489986 cites W1999871292 @default.
- W209489986 cites W2001325214 @default.
- W209489986 cites W2007282282 @default.
- W209489986 cites W2007927352 @default.
- W209489986 cites W2010761427 @default.
- W209489986 cites W2019183979 @default.
- W209489986 cites W2023766203 @default.
- W209489986 cites W2050424531 @default.
- W209489986 cites W2067819989 @default.
- W209489986 cites W2068713872 @default.
- W209489986 cites W2079159646 @default.
- W209489986 cites W2081338783 @default.
- W209489986 cites W2086344321 @default.
- W209489986 cites W2128777688 @default.
- W209489986 cites W2135543411 @default.
- W209489986 cites W2162791775 @default.
- W209489986 cites W2164774824 @default.
- W209489986 cites W2165066353 @default.
- W209489986 cites W2951671651 @default.
- W209489986 cites W2964004911 @default.
- W209489986 cites W2964121210 @default.
- W209489986 cites W3099208186 @default.
- W209489986 cites W3100507412 @default.
- W209489986 cites W648853080 @default.
- W209489986 cites W2779923930 @default.
- W209489986 hasPublicationYear "2012" @default.
- W209489986 type Work @default.
- W209489986 sameAs 209489986 @default.
- W209489986 citedByCount "3" @default.
- W209489986 countsByYear W2094899862012 @default.
- W209489986 crossrefType "journal-article" @default.
- W209489986 hasAuthorship W209489986A5050741771 @default.
- W209489986 hasConcept C11413529 @default.
- W209489986 hasConcept C114410712 @default.
- W209489986 hasConcept C114614502 @default.
- W209489986 hasConcept C134306372 @default.
- W209489986 hasConcept C202444582 @default.
- W209489986 hasConcept C2524010 @default.
- W209489986 hasConcept C2778112365 @default.
- W209489986 hasConcept C30014739 @default.
- W209489986 hasConcept C33923547 @default.
- W209489986 hasConcept C34388435 @default.
- W209489986 hasConcept C54355233 @default.
- W209489986 hasConcept C86803240 @default.
- W209489986 hasConcept C96469262 @default.
- W209489986 hasConcept C99564226 @default.
- W209489986 hasConceptScore W209489986C11413529 @default.
- W209489986 hasConceptScore W209489986C114410712 @default.
- W209489986 hasConceptScore W209489986C114614502 @default.
- W209489986 hasConceptScore W209489986C134306372 @default.
- W209489986 hasConceptScore W209489986C202444582 @default.
- W209489986 hasConceptScore W209489986C2524010 @default.
- W209489986 hasConceptScore W209489986C2778112365 @default.
- W209489986 hasConceptScore W209489986C30014739 @default.
- W209489986 hasConceptScore W209489986C33923547 @default.
- W209489986 hasConceptScore W209489986C34388435 @default.
- W209489986 hasConceptScore W209489986C54355233 @default.
- W209489986 hasConceptScore W209489986C86803240 @default.
- W209489986 hasConceptScore W209489986C96469262 @default.
- W209489986 hasConceptScore W209489986C99564226 @default.
- W209489986 hasLocation W2094899861 @default.
- W209489986 hasOpenAccess W209489986 @default.
- W209489986 hasPrimaryLocation W2094899861 @default.
- W209489986 hasRelatedWork W1496904882 @default.
- W209489986 hasRelatedWork W1503313905 @default.
- W209489986 hasRelatedWork W1737101290 @default.
- W209489986 hasRelatedWork W1972038344 @default.
- W209489986 hasRelatedWork W2007282282 @default.
- W209489986 hasRelatedWork W2017995634 @default.
- W209489986 hasRelatedWork W2048788200 @default.
- W209489986 hasRelatedWork W2050424531 @default.
- W209489986 hasRelatedWork W2060353208 @default.
- W209489986 hasRelatedWork W2067819989 @default.
- W209489986 hasRelatedWork W2070621953 @default.
- W209489986 hasRelatedWork W2087621161 @default.
- W209489986 hasRelatedWork W2101412131 @default.
- W209489986 hasRelatedWork W2135543411 @default.
- W209489986 hasRelatedWork W2182556888 @default.