Matches in SemOpenAlex for { <https://semopenalex.org/work/W2095003283> ?p ?o ?g. }
- W2095003283 abstract "Abstract Accurate prediction of permeability remains the key to the determination of oil and gas reservoir quality. A number of studies have been carried out to investigate the predictability of reservoir permeability from log measurements. More recent studies have attempted to predict permeability from seismic signals. Both log measurements and seismic signals have shown to provide rich information about the structure and texture of the subsurface and hence have jointly proven to be good predictors of permeability. However, previous studies on this subject were limited to the application of Artificial Neural Networks (ANN). With the persistent quest for more accurate predictions for more successful exploration and improved production, this paper investigates the effect of combining both seismic and log datasets with the application of more advanced Artificial Intelligence techniques on the accuracy of reservoir permeability predictions. Log measurements and seismic signals obtained from several wells in a giant oil and gas reservoir were used to train and evaluate the performance of Support Vector Machine (SVM) and Type-2 Fuzzy Logic (T2FL) models in the prediction of permeability. The log measurements were matched with the seismic signals of the exact corresponding wells taken from 10-, 20-, 30- and 40ms seismic zones. When compared with the long-existing ANN model, the SVM model gave the most accurate permeability predictions, with the highest correlation coefficient and the least error measures. The results also showed that a combination of seismic and log data has the potential to give more accurate permeability predictions than using either of them separately. A wider field application of the proposed techniques will give more insight, and is expected to save more time, effort and improve hydrocarbon recovery." @default.
- W2095003283 created "2016-06-24" @default.
- W2095003283 creator A5027378012 @default.
- W2095003283 creator A5053834729 @default.
- W2095003283 creator A5054922583 @default.
- W2095003283 creator A5084327778 @default.
- W2095003283 date "2013-03-10" @default.
- W2095003283 modified "2023-09-27" @default.
- W2095003283 title "Improved Permeability Prediction from Seismic and Log Data using Artificial Intelligence Techniques" @default.
- W2095003283 cites W1963575085 @default.
- W2095003283 cites W1967222537 @default.
- W2095003283 cites W1978667132 @default.
- W2095003283 cites W1979311880 @default.
- W2095003283 cites W1983770051 @default.
- W2095003283 cites W1987324838 @default.
- W2095003283 cites W1988210039 @default.
- W2095003283 cites W1988600441 @default.
- W2095003283 cites W1993050508 @default.
- W2095003283 cites W2000899424 @default.
- W2095003283 cites W2007057010 @default.
- W2095003283 cites W2021576682 @default.
- W2095003283 cites W2032741416 @default.
- W2095003283 cites W2043050090 @default.
- W2095003283 cites W2053779593 @default.
- W2095003283 cites W2063133425 @default.
- W2095003283 cites W2066486052 @default.
- W2095003283 cites W2070774654 @default.
- W2095003283 cites W2081208624 @default.
- W2095003283 cites W2088243158 @default.
- W2095003283 cites W2090081458 @default.
- W2095003283 cites W4236440454 @default.
- W2095003283 cites W4299689471 @default.
- W2095003283 doi "https://doi.org/10.2118/164465-ms" @default.
- W2095003283 hasPublicationYear "2013" @default.
- W2095003283 type Work @default.
- W2095003283 sameAs 2095003283 @default.
- W2095003283 citedByCount "13" @default.
- W2095003283 countsByYear W20950032832013 @default.
- W2095003283 countsByYear W20950032832014 @default.
- W2095003283 countsByYear W20950032832016 @default.
- W2095003283 countsByYear W20950032832019 @default.
- W2095003283 countsByYear W20950032832021 @default.
- W2095003283 countsByYear W20950032832022 @default.
- W2095003283 countsByYear W20950032832023 @default.
- W2095003283 crossrefType "proceedings-article" @default.
- W2095003283 hasAuthorship W2095003283A5027378012 @default.
- W2095003283 hasAuthorship W2095003283A5053834729 @default.
- W2095003283 hasAuthorship W2095003283A5054922583 @default.
- W2095003283 hasAuthorship W2095003283A5084327778 @default.
- W2095003283 hasConcept C119857082 @default.
- W2095003283 hasConcept C120882062 @default.
- W2095003283 hasConcept C12267149 @default.
- W2095003283 hasConcept C127313418 @default.
- W2095003283 hasConcept C14641988 @default.
- W2095003283 hasConcept C154945302 @default.
- W2095003283 hasConcept C159737794 @default.
- W2095003283 hasConcept C185592680 @default.
- W2095003283 hasConcept C2524010 @default.
- W2095003283 hasConcept C33923547 @default.
- W2095003283 hasConcept C35817400 @default.
- W2095003283 hasConcept C39267094 @default.
- W2095003283 hasConcept C41008148 @default.
- W2095003283 hasConcept C41625074 @default.
- W2095003283 hasConcept C50644808 @default.
- W2095003283 hasConcept C55493867 @default.
- W2095003283 hasConcept C64370902 @default.
- W2095003283 hasConcept C78762247 @default.
- W2095003283 hasConceptScore W2095003283C119857082 @default.
- W2095003283 hasConceptScore W2095003283C120882062 @default.
- W2095003283 hasConceptScore W2095003283C12267149 @default.
- W2095003283 hasConceptScore W2095003283C127313418 @default.
- W2095003283 hasConceptScore W2095003283C14641988 @default.
- W2095003283 hasConceptScore W2095003283C154945302 @default.
- W2095003283 hasConceptScore W2095003283C159737794 @default.
- W2095003283 hasConceptScore W2095003283C185592680 @default.
- W2095003283 hasConceptScore W2095003283C2524010 @default.
- W2095003283 hasConceptScore W2095003283C33923547 @default.
- W2095003283 hasConceptScore W2095003283C35817400 @default.
- W2095003283 hasConceptScore W2095003283C39267094 @default.
- W2095003283 hasConceptScore W2095003283C41008148 @default.
- W2095003283 hasConceptScore W2095003283C41625074 @default.
- W2095003283 hasConceptScore W2095003283C50644808 @default.
- W2095003283 hasConceptScore W2095003283C55493867 @default.
- W2095003283 hasConceptScore W2095003283C64370902 @default.
- W2095003283 hasConceptScore W2095003283C78762247 @default.
- W2095003283 hasLocation W20950032831 @default.
- W2095003283 hasOpenAccess W2095003283 @default.
- W2095003283 hasPrimaryLocation W20950032831 @default.
- W2095003283 hasRelatedWork W2029200878 @default.
- W2095003283 hasRelatedWork W2095003283 @default.
- W2095003283 hasRelatedWork W2112870345 @default.
- W2095003283 hasRelatedWork W2159054789 @default.
- W2095003283 hasRelatedWork W2272107137 @default.
- W2095003283 hasRelatedWork W2321292673 @default.
- W2095003283 hasRelatedWork W2381072557 @default.
- W2095003283 hasRelatedWork W2749055182 @default.
- W2095003283 hasRelatedWork W3215723174 @default.
- W2095003283 hasRelatedWork W1753523577 @default.
- W2095003283 isParatext "false" @default.
- W2095003283 isRetracted "false" @default.