Matches in SemOpenAlex for { <https://semopenalex.org/work/W2095014927> ?p ?o ?g. }
- W2095014927 endingPage "882" @default.
- W2095014927 startingPage "873" @default.
- W2095014927 abstract "The presence of film grain often imposes the crucial quality choice between film enlargement and speed. In this work we present an automatic technique for reducing the amount of grain on film images. The technique reduces the noise by thresholding the wavelet components of the image with parameterised family of functions obtained with an initial training on a set of images. The training produces the parameters identifying the functions by optimising a cost function related to the image visual quality. The method has been tested on images contaminated by artificial and by real grain noise from two Kodak film makes. Being the main focus of this work on the grain reduction aspect rather than on the modelling side, we rely on a well known and state of the art software (Furnace) instead of producing a new noise model. The results demonstrate the efficiency of the method in reducing the grain noise and the ability of the technique in adapting the parameters to the noise level on each colour component. Another relevant characteristic of the method is its potential to be used for various different applications, class of images and type of noises just by modifying training set of images, cost function and shape of the thresholding functions." @default.
- W2095014927 created "2016-06-24" @default.
- W2095014927 creator A5013107103 @default.
- W2095014927 creator A5048977326 @default.
- W2095014927 creator A5090702210 @default.
- W2095014927 date "2004-09-01" @default.
- W2095014927 modified "2023-09-23" @default.
- W2095014927 title "Film grain reduction on colour images using undecimated wavelet transform" @default.
- W2095014927 cites W1489213177 @default.
- W2095014927 cites W1516028974 @default.
- W2095014927 cites W1538912020 @default.
- W2095014927 cites W1584471057 @default.
- W2095014927 cites W1594494252 @default.
- W2095014927 cites W191129667 @default.
- W2095014927 cites W1972384107 @default.
- W2095014927 cites W1977550061 @default.
- W2095014927 cites W1984875175 @default.
- W2095014927 cites W1985766998 @default.
- W2095014927 cites W1987509956 @default.
- W2095014927 cites W1988496836 @default.
- W2095014927 cites W1998228382 @default.
- W2095014927 cites W2004217976 @default.
- W2095014927 cites W2008278903 @default.
- W2095014927 cites W2020781433 @default.
- W2095014927 cites W2032806448 @default.
- W2095014927 cites W2045975550 @default.
- W2095014927 cites W2046658762 @default.
- W2095014927 cites W2073516503 @default.
- W2095014927 cites W2073682450 @default.
- W2095014927 cites W2079831112 @default.
- W2095014927 cites W2088044998 @default.
- W2095014927 cites W2098890441 @default.
- W2095014927 cites W2099232330 @default.
- W2095014927 cites W2099831875 @default.
- W2095014927 cites W2103343657 @default.
- W2095014927 cites W2106706281 @default.
- W2095014927 cites W2107474339 @default.
- W2095014927 cites W2108608669 @default.
- W2095014927 cites W2115755118 @default.
- W2095014927 cites W2116988482 @default.
- W2095014927 cites W2124335859 @default.
- W2095014927 cites W2127192017 @default.
- W2095014927 cites W2130065740 @default.
- W2095014927 cites W2133140216 @default.
- W2095014927 cites W2136017820 @default.
- W2095014927 cites W2144705957 @default.
- W2095014927 cites W2146842127 @default.
- W2095014927 cites W2151870479 @default.
- W2095014927 cites W2157755275 @default.
- W2095014927 cites W2158940042 @default.
- W2095014927 cites W2163429711 @default.
- W2095014927 cites W2169173563 @default.
- W2095014927 cites W2170120409 @default.
- W2095014927 cites W3032942295 @default.
- W2095014927 cites W59771946 @default.
- W2095014927 cites W1586397342 @default.
- W2095014927 cites W2523334241 @default.
- W2095014927 doi "https://doi.org/10.1016/j.imavis.2004.04.002" @default.
- W2095014927 hasPublicationYear "2004" @default.
- W2095014927 type Work @default.
- W2095014927 sameAs 2095014927 @default.
- W2095014927 citedByCount "5" @default.
- W2095014927 countsByYear W20950149272012 @default.
- W2095014927 crossrefType "journal-article" @default.
- W2095014927 hasAuthorship W2095014927A5013107103 @default.
- W2095014927 hasAuthorship W2095014927A5048977326 @default.
- W2095014927 hasAuthorship W2095014927A5090702210 @default.
- W2095014927 hasConcept C111335779 @default.
- W2095014927 hasConcept C115961682 @default.
- W2095014927 hasConcept C120665830 @default.
- W2095014927 hasConcept C121332964 @default.
- W2095014927 hasConcept C153180895 @default.
- W2095014927 hasConcept C154945302 @default.
- W2095014927 hasConcept C163294075 @default.
- W2095014927 hasConcept C191178318 @default.
- W2095014927 hasConcept C192209626 @default.
- W2095014927 hasConcept C196216189 @default.
- W2095014927 hasConcept C2524010 @default.
- W2095014927 hasConcept C31972630 @default.
- W2095014927 hasConcept C33923547 @default.
- W2095014927 hasConcept C41008148 @default.
- W2095014927 hasConcept C47432892 @default.
- W2095014927 hasConcept C99498987 @default.
- W2095014927 hasConceptScore W2095014927C111335779 @default.
- W2095014927 hasConceptScore W2095014927C115961682 @default.
- W2095014927 hasConceptScore W2095014927C120665830 @default.
- W2095014927 hasConceptScore W2095014927C121332964 @default.
- W2095014927 hasConceptScore W2095014927C153180895 @default.
- W2095014927 hasConceptScore W2095014927C154945302 @default.
- W2095014927 hasConceptScore W2095014927C163294075 @default.
- W2095014927 hasConceptScore W2095014927C191178318 @default.
- W2095014927 hasConceptScore W2095014927C192209626 @default.
- W2095014927 hasConceptScore W2095014927C196216189 @default.
- W2095014927 hasConceptScore W2095014927C2524010 @default.
- W2095014927 hasConceptScore W2095014927C31972630 @default.
- W2095014927 hasConceptScore W2095014927C33923547 @default.
- W2095014927 hasConceptScore W2095014927C41008148 @default.
- W2095014927 hasConceptScore W2095014927C47432892 @default.