Matches in SemOpenAlex for { <https://semopenalex.org/work/W2095114534> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2095114534 endingPage "1" @default.
- W2095114534 startingPage "1" @default.
- W2095114534 abstract "Advances in high throughput technologies, specially next-generation sequencing, have generated massive amounts of biological data. To take full advantage of these data and to extract as much information and knowledge from them as possible, we face many challenges. To help address and overcome these challenges and promote the application of informatics to translational research, we launched this special issue.The biomedical data analyzed in this issue covers molecular, imaging, and clinical data. For instance, J. Shang et al. evaluated and compared multiple aligners for next-generation sequencing data, providing an important guide for biologists to select suitable aligners, and H. Li et al. proposed a method to identify mutated driver pathways in cancer. Y. Li et al. established a tissue type assignment method for glioblastoma multiforme by analyzing the magnetic resonance spectroscopy imaging data and tissue distribution information. F. Liu et al. applied multiple technologies to integrate the clinical and genomic information and to investigate their association for facilitating the diagnosis and treatment of colorectal cancer. X. Zhang et al. analyzed extensive clinical data, summarizing the disease spectrum, in China, and suggesting to pay more attention on disease prevention by promoting lifestyle changes.In terms of translational research, two aspects, that is, biomarker discovery and drug design for diagnosis or treatment of diseases, were discussed based on computational studies. J. Huang and W. Yan identified micro-RNA biomarkers for sepsis and gastric cancer, based on miRNAs regulatory network analysis and systems biological approach, respectively. Y. Sun et al. successfully implemented big data technologies to a study of drug combinatorial effects. The Hadoop-based model showed higher efficiency and better performance than the traditional methods for the prediction of drug combination effects.In this issue, we also compiled two technical works for biomedical data analysis. First is the work by H. Li et al., where they developed a hybrid support vector machine (SVM) model for privacy preserving data classification. The second is the work by J. Lei et al., where they made a systematic study on the usability of information technology, especially health information technologies, in China, by the analysis of publications during the past 30 years.In addition to the analysis of static data, dynamic simulation is also important for biomedical data analysis. L. Jin performed a metadynamics simulation study of conformational transformation of HhaI methyltransferase and proposed that the induced fit model is necessary to understand the function of the studied molecule.By launching this issue, we wish to give the readers a wider perspective on the future of data modeling and simulation and to leave the readers with the impression that informatics will be the key for successful translational research.Bairong ShenAndrew E. TeschendorffDegui ZhiJunfeng Xia" @default.
- W2095114534 created "2016-06-24" @default.
- W2095114534 creator A5012354604 @default.
- W2095114534 creator A5041076064 @default.
- W2095114534 creator A5060766047 @default.
- W2095114534 creator A5065943710 @default.
- W2095114534 date "2014-01-01" @default.
- W2095114534 modified "2023-10-12" @default.
- W2095114534 title "Biomedical Data Integration, Modeling, and Simulation in the Era of Big Data and Translational Medicine" @default.
- W2095114534 doi "https://doi.org/10.1155/2014/731546" @default.
- W2095114534 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4131419" @default.
- W2095114534 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25147813" @default.
- W2095114534 hasPublicationYear "2014" @default.
- W2095114534 type Work @default.
- W2095114534 sameAs 2095114534 @default.
- W2095114534 citedByCount "6" @default.
- W2095114534 countsByYear W20951145342015 @default.
- W2095114534 countsByYear W20951145342016 @default.
- W2095114534 countsByYear W20951145342018 @default.
- W2095114534 countsByYear W20951145342019 @default.
- W2095114534 crossrefType "journal-article" @default.
- W2095114534 hasAuthorship W2095114534A5012354604 @default.
- W2095114534 hasAuthorship W2095114534A5041076064 @default.
- W2095114534 hasAuthorship W2095114534A5060766047 @default.
- W2095114534 hasAuthorship W2095114534A5065943710 @default.
- W2095114534 hasBestOaLocation W20951145341 @default.
- W2095114534 hasConcept C104317684 @default.
- W2095114534 hasConcept C124101348 @default.
- W2095114534 hasConcept C128544194 @default.
- W2095114534 hasConcept C141231307 @default.
- W2095114534 hasConcept C142724271 @default.
- W2095114534 hasConcept C162264550 @default.
- W2095114534 hasConcept C163293594 @default.
- W2095114534 hasConcept C163763905 @default.
- W2095114534 hasConcept C189206191 @default.
- W2095114534 hasConcept C2522767166 @default.
- W2095114534 hasConcept C41008148 @default.
- W2095114534 hasConcept C54355233 @default.
- W2095114534 hasConcept C60644358 @default.
- W2095114534 hasConcept C70721500 @default.
- W2095114534 hasConcept C71924100 @default.
- W2095114534 hasConcept C75684735 @default.
- W2095114534 hasConcept C86803240 @default.
- W2095114534 hasConceptScore W2095114534C104317684 @default.
- W2095114534 hasConceptScore W2095114534C124101348 @default.
- W2095114534 hasConceptScore W2095114534C128544194 @default.
- W2095114534 hasConceptScore W2095114534C141231307 @default.
- W2095114534 hasConceptScore W2095114534C142724271 @default.
- W2095114534 hasConceptScore W2095114534C162264550 @default.
- W2095114534 hasConceptScore W2095114534C163293594 @default.
- W2095114534 hasConceptScore W2095114534C163763905 @default.
- W2095114534 hasConceptScore W2095114534C189206191 @default.
- W2095114534 hasConceptScore W2095114534C2522767166 @default.
- W2095114534 hasConceptScore W2095114534C41008148 @default.
- W2095114534 hasConceptScore W2095114534C54355233 @default.
- W2095114534 hasConceptScore W2095114534C60644358 @default.
- W2095114534 hasConceptScore W2095114534C70721500 @default.
- W2095114534 hasConceptScore W2095114534C71924100 @default.
- W2095114534 hasConceptScore W2095114534C75684735 @default.
- W2095114534 hasConceptScore W2095114534C86803240 @default.
- W2095114534 hasLocation W20951145341 @default.
- W2095114534 hasLocation W20951145342 @default.
- W2095114534 hasLocation W20951145343 @default.
- W2095114534 hasLocation W20951145344 @default.
- W2095114534 hasLocation W20951145345 @default.
- W2095114534 hasOpenAccess W2095114534 @default.
- W2095114534 hasPrimaryLocation W20951145341 @default.
- W2095114534 hasRelatedWork W1566426671 @default.
- W2095114534 hasRelatedWork W1999344992 @default.
- W2095114534 hasRelatedWork W2364239786 @default.
- W2095114534 hasRelatedWork W2374368495 @default.
- W2095114534 hasRelatedWork W2383984929 @default.
- W2095114534 hasRelatedWork W2385332254 @default.
- W2095114534 hasRelatedWork W2464645957 @default.
- W2095114534 hasRelatedWork W2590643325 @default.
- W2095114534 hasRelatedWork W3032627393 @default.
- W2095114534 hasRelatedWork W3132560410 @default.
- W2095114534 hasVolume "2014" @default.
- W2095114534 isParatext "false" @default.
- W2095114534 isRetracted "false" @default.
- W2095114534 magId "2095114534" @default.
- W2095114534 workType "article" @default.