Matches in SemOpenAlex for { <https://semopenalex.org/work/W2095184923> ?p ?o ?g. }
- W2095184923 endingPage "257" @default.
- W2095184923 startingPage "229" @default.
- W2095184923 abstract "The world-class Loulo mining district (15.5 Moz resource), in the Birimian terrane of western Mali, contains a range of mineralogically diverse styles of orogenic gold mineralization. The district is distinguished by As-rich orebodies as at Yalea, as well as tourmaline-bearing, Fe-rich, orebodies as at Gara. New fluid inclusion and stable isotope data presented here constrain the nature of the hydrothermal fluids responsible for these different types of mineralization, and point towards the role of multifluid sources (metamorphic and magmatic) in the formation of orogenic gold deposits. Microthermometric and laser Raman studies from Yalea Main and two other similar orebodies (Loulo-3 and Baboto) reveal the dominance of coexisting CO 2 -N 2 ±CH 4 (type 1) and H 2 O-NaCl (type 2) fluid inclusions. These inclusions show evidence of fluid unmixing from reduced (quartz-faylite-magnetite, QFM, buffered), low-salinity (≤10 wt % NaCl equiv), CO 2 -rich-H 2 O-NaCl-N 2 ± CH 4 primary ore fluids. The combination of microthermometric data and geothermometry based on ore and alteration assemblages indicate trapping temperatures and pressures of 270° to 340°C at 1.4 to 1.8 kbar. The P-T-X state of the Yalea-style mineralizing fluids, along with the δ 18 O fluid compositions of 8.8 to 10.7‰, is consistent with the derivation of auriferous fluids during greenschist facies regional metamorphism of the host terrane. Similar fluid compositions were previously reported elsewhere in the Birimian crust of West Africa and in other orogenic gold districts worldwide. The precipitation of gold from the H 2 S-rich metamorphic fluid is primarily linked to phase separation of the ore fluid, which is controlled by P-T fluctuations and/or fluid-rock interaction with carbonaceous host sedimentary rocks (confirmed by low δ 13 C values of −21.7 to −15.8‰). Fluid inclusion investigations from Gara and a similar style orebody (Yalea North) indicate the presence of coexisting CO 2 ± N 2 ± CH 4 (type 1) and mixed-salinity (5–21 wt % NaCl equiv) CO 2 -rich-H 2 O-NaCl inclusions (type 3). Inclusion assemblages also contain common oxidized (hematite-magnetite, HM, buffered), high temperature (>400°C), hypersaline (∼35–50 wt % total dissolved solids), metalliferous (Na+Fe+Ca+Cu+Ni+W+ Pb+Zn), multiphase H 2 O-rich-CO 2 -NaCl-FeCl 2 inclusions (type 4). This inclusion type has not been previously reported in other Birimian terranes. The composition of the brines, along with carbon isotope data ( δ 13 C of −14.4 to −4.5‰), suggests a magmatic input to the Gara-style hydrothermal system. The coexistence in the fluid inclusion assemblages of the magmatic brines with Yalea-style, CO 2 -rich, metamorphic fluids and the positive correlation between salinity and homogenization temperatures suggest mineralization was locally controlled by fluid mixing. The interaction of these two chemically contrasting fluids explains the distinctive petrographic characteristics of the Gara-style orebodies. This includes the growth of widespread multi-stage Fe 3+ -rich tourmaline (B-rich granite source) and sodic alteration, and ore assemblages consisting of abundant nickeloan pyrite, (REE)-phosphates, Ni ± Co ± Pb ± Zn minor/trace sulfides, and scheelite. Gold deposition in the Gara-style hydrothermal system is related to physical and chemical changes of the two fluids during mixing (e.g., decreases in f O2 and T in the brines and retrograde boiling of the CO 2 component in the metamorphic fluids, a “salting out effect”)." @default.
- W2095184923 created "2016-06-24" @default.
- W2095184923 creator A5015097681 @default.
- W2095184923 creator A5034841018 @default.
- W2095184923 creator A5036557426 @default.
- W2095184923 creator A5056551701 @default.
- W2095184923 creator A5058371561 @default.
- W2095184923 date "2013-02-21" @default.
- W2095184923 modified "2023-10-13" @default.
- W2095184923 title "A Fluid Inclusion and Stable Isotope Study at the Loulo Mining District, Mali, West Africa: Implications for Multifluid Sources in the Generation of Orogenic Gold Deposits" @default.
- W2095184923 cites W110525052 @default.
- W2095184923 cites W11107958 @default.
- W2095184923 cites W1492000624 @default.
- W2095184923 cites W1533168981 @default.
- W2095184923 cites W1588154159 @default.
- W2095184923 cites W1965888643 @default.
- W2095184923 cites W1970783047 @default.
- W2095184923 cites W1972004926 @default.
- W2095184923 cites W1972804398 @default.
- W2095184923 cites W1975056180 @default.
- W2095184923 cites W1977194599 @default.
- W2095184923 cites W1983303965 @default.
- W2095184923 cites W1984118119 @default.
- W2095184923 cites W1984773925 @default.
- W2095184923 cites W1984881578 @default.
- W2095184923 cites W1997866625 @default.
- W2095184923 cites W1999866523 @default.
- W2095184923 cites W1999976919 @default.
- W2095184923 cites W2004131413 @default.
- W2095184923 cites W2005121896 @default.
- W2095184923 cites W2006961343 @default.
- W2095184923 cites W2008533057 @default.
- W2095184923 cites W2015273598 @default.
- W2095184923 cites W2017468132 @default.
- W2095184923 cites W2017934677 @default.
- W2095184923 cites W2018479440 @default.
- W2095184923 cites W2024614187 @default.
- W2095184923 cites W2028864413 @default.
- W2095184923 cites W2028917031 @default.
- W2095184923 cites W2031554685 @default.
- W2095184923 cites W2034467201 @default.
- W2095184923 cites W2034842903 @default.
- W2095184923 cites W2035274130 @default.
- W2095184923 cites W2036263446 @default.
- W2095184923 cites W2045986371 @default.
- W2095184923 cites W2050582083 @default.
- W2095184923 cites W2055394521 @default.
- W2095184923 cites W2059849751 @default.
- W2095184923 cites W2060890318 @default.
- W2095184923 cites W2062952313 @default.
- W2095184923 cites W2063606616 @default.
- W2095184923 cites W2064847636 @default.
- W2095184923 cites W2065319059 @default.
- W2095184923 cites W2072536178 @default.
- W2095184923 cites W2073250859 @default.
- W2095184923 cites W2075901285 @default.
- W2095184923 cites W2077227590 @default.
- W2095184923 cites W2078769861 @default.
- W2095184923 cites W2080243666 @default.
- W2095184923 cites W2080523684 @default.
- W2095184923 cites W2081303842 @default.
- W2095184923 cites W2082396313 @default.
- W2095184923 cites W2082624801 @default.
- W2095184923 cites W2084286473 @default.
- W2095184923 cites W2084463468 @default.
- W2095184923 cites W2093923592 @default.
- W2095184923 cites W2097042150 @default.
- W2095184923 cites W2101939343 @default.
- W2095184923 cites W2102454243 @default.
- W2095184923 cites W2114745060 @default.
- W2095184923 cites W2120270131 @default.
- W2095184923 cites W2120706678 @default.
- W2095184923 cites W2121469084 @default.
- W2095184923 cites W2127294250 @default.
- W2095184923 cites W2128703274 @default.
- W2095184923 cites W2130337482 @default.
- W2095184923 cites W2134179846 @default.
- W2095184923 cites W2145354120 @default.
- W2095184923 cites W2148959915 @default.
- W2095184923 cites W2153161505 @default.
- W2095184923 cites W2153736317 @default.
- W2095184923 cites W2165587668 @default.
- W2095184923 cites W2168026755 @default.
- W2095184923 cites W2170365703 @default.
- W2095184923 cites W2170770997 @default.
- W2095184923 cites W2216191195 @default.
- W2095184923 cites W2240463864 @default.
- W2095184923 cites W2466270730 @default.
- W2095184923 cites W2510880446 @default.
- W2095184923 cites W2518304906 @default.
- W2095184923 cites W2591633532 @default.
- W2095184923 cites W2616532041 @default.
- W2095184923 cites W405654338 @default.
- W2095184923 cites W2484046883 @default.
- W2095184923 doi "https://doi.org/10.2113/econgeo.108.2.229" @default.
- W2095184923 hasPublicationYear "2013" @default.
- W2095184923 type Work @default.
- W2095184923 sameAs 2095184923 @default.