Matches in SemOpenAlex for { <https://semopenalex.org/work/W2095230904> ?p ?o ?g. }
- W2095230904 endingPage "408" @default.
- W2095230904 startingPage "391" @default.
- W2095230904 abstract "Os isotope studies of Mesoarchean (3.2 Ga) chromitite and associated gabbro–breccia hosted platinum-group element (PGE) deposits of the Singhbhum Craton in eastern India provide evidence for a complex history involving source mantle heterogeneity and hydrothermal processes. The average initial 187Os/188Os compositions of unaltered chromites of massive chromitite layers from two mining districts are 0.1031 +/− 0.0007 (Nuasahi) and 0.1029 +/− 0.0005 (Sukinda), with negative γOs values of − 1.78 +/− 0.65 and − 2.04 +/− 0.43, respectively. Mantle extraction ages (TMA) for these chromites indicate depletion from primitive mantle beginning as early as ∼ 3.7 Ga, some 400 Ma before the crystallization of the respective chromites. The subchondritic signatures of Os in the studied chromites are comparable with results of age-constrained chromites from ultramafic intrusions in the Zimbabwe Craton [Nägler, T.F., Kramers, J.D., Kamber, B.S., Frei, R., Prendergast, M.D.A., 1997. Growth of subcontinental lithospheric mantle beneath Zimbabwe started at or before 3.8 Ga: Re–Os study on chromites. Geology 25, 983–986.], interpreted to reflect sequential extraction from evolving Archean subcontinental lithospheric mantle (SCLM). The similarity of depleted Os isotopic signatures of chromites from the Singhbhum Craton with those from the Zimbabwean occurrences, and their compatibility with the proposed Kaapvaal Craton SCLM model, leads us to propose that SCLM beneath the Singhbhum Craton also started to form in the early Archean. Up to now, early Archean continental crustal fragments, expected to have formed with the SCLM in the Singhbhum Craton have not been found, and early Archean detrital zircons [Mishra, S., Deomurari, M.P., Wiedenbeck, M., Goswami, J.N., Ray, S., Saha, A.K., 1999. 207Pb/206Pb zircon ages and the evolution of the Singhbhum Craton, eastern India: an ion microprobe study. Precambrian Res. 93, 139–151.] remain the only evidence for their existence. An alternative possibility is that the early Archean depleted mantle region could have remained within the convecting mantle for a few hundred million years before being added to the SCLM beneath the Singhbhum Craton. Re–Os isotopic data of chromites of massive chromitites from PGE and base metal sulfide (BMS) mineralized breccia zones are extremely heterogeneous. Perturbations of the Re–Os isotope systematics in these chromites are best explained as having resulted from interaction with hydrothermal fluids percolating in the shear zones, possibly genetically related to the emplacement of 3.1 Ga gabbroic suites. These fluids played a major role for the genesis and modification of the PGE mineralization." @default.
- W2095230904 created "2016-06-24" @default.
- W2095230904 creator A5005510368 @default.
- W2095230904 creator A5014742790 @default.
- W2095230904 creator A5039962635 @default.
- W2095230904 date "2007-10-01" @default.
- W2095230904 modified "2023-10-18" @default.
- W2095230904 title "Os isotope systematics of mesoarchean chromitite-PGE deposits in the Singhbhum Craton (India): Implications for the evolution of lithospheric mantle" @default.
- W2095230904 cites W1509335520 @default.
- W2095230904 cites W1548900912 @default.
- W2095230904 cites W1599863721 @default.
- W2095230904 cites W1964175282 @default.
- W2095230904 cites W1968409651 @default.
- W2095230904 cites W1968605693 @default.
- W2095230904 cites W1977392925 @default.
- W2095230904 cites W1983410499 @default.
- W2095230904 cites W1984745359 @default.
- W2095230904 cites W1986739254 @default.
- W2095230904 cites W1986740297 @default.
- W2095230904 cites W1991487012 @default.
- W2095230904 cites W1991569889 @default.
- W2095230904 cites W1998332981 @default.
- W2095230904 cites W1999985630 @default.
- W2095230904 cites W2001989120 @default.
- W2095230904 cites W2012348468 @default.
- W2095230904 cites W2012690107 @default.
- W2095230904 cites W2020950712 @default.
- W2095230904 cites W2022050148 @default.
- W2095230904 cites W2023094921 @default.
- W2095230904 cites W2031839367 @default.
- W2095230904 cites W2032417376 @default.
- W2095230904 cites W2034785473 @default.
- W2095230904 cites W2035595872 @default.
- W2095230904 cites W2039293023 @default.
- W2095230904 cites W2040022671 @default.
- W2095230904 cites W2040088969 @default.
- W2095230904 cites W2041258049 @default.
- W2095230904 cites W2041825120 @default.
- W2095230904 cites W2045557493 @default.
- W2095230904 cites W2045837211 @default.
- W2095230904 cites W2048689831 @default.
- W2095230904 cites W2051668303 @default.
- W2095230904 cites W2053007185 @default.
- W2095230904 cites W2054486238 @default.
- W2095230904 cites W2055216080 @default.
- W2095230904 cites W2066267518 @default.
- W2095230904 cites W2066500879 @default.
- W2095230904 cites W2066563289 @default.
- W2095230904 cites W2068464003 @default.
- W2095230904 cites W2076232253 @default.
- W2095230904 cites W2080706558 @default.
- W2095230904 cites W2083591846 @default.
- W2095230904 cites W2084322477 @default.
- W2095230904 cites W2088223235 @default.
- W2095230904 cites W2092262923 @default.
- W2095230904 cites W2093827788 @default.
- W2095230904 cites W2113812223 @default.
- W2095230904 cites W2116017987 @default.
- W2095230904 cites W2120299465 @default.
- W2095230904 cites W2122594547 @default.
- W2095230904 cites W2127203865 @default.
- W2095230904 cites W2133457691 @default.
- W2095230904 cites W2148876776 @default.
- W2095230904 cites W2151010548 @default.
- W2095230904 cites W2151781737 @default.
- W2095230904 cites W2155624504 @default.
- W2095230904 cites W2161866809 @default.
- W2095230904 cites W2165026647 @default.
- W2095230904 cites W2166632770 @default.
- W2095230904 cites W2579656065 @default.
- W2095230904 doi "https://doi.org/10.1016/j.chemgeo.2007.06.025" @default.
- W2095230904 hasPublicationYear "2007" @default.
- W2095230904 type Work @default.
- W2095230904 sameAs 2095230904 @default.
- W2095230904 citedByCount "60" @default.
- W2095230904 countsByYear W20952309042012 @default.
- W2095230904 countsByYear W20952309042013 @default.
- W2095230904 countsByYear W20952309042014 @default.
- W2095230904 countsByYear W20952309042015 @default.
- W2095230904 countsByYear W20952309042016 @default.
- W2095230904 countsByYear W20952309042017 @default.
- W2095230904 countsByYear W20952309042018 @default.
- W2095230904 countsByYear W20952309042019 @default.
- W2095230904 countsByYear W20952309042020 @default.
- W2095230904 countsByYear W20952309042021 @default.
- W2095230904 countsByYear W20952309042022 @default.
- W2095230904 countsByYear W20952309042023 @default.
- W2095230904 crossrefType "journal-article" @default.
- W2095230904 hasAuthorship W2095230904A5005510368 @default.
- W2095230904 hasAuthorship W2095230904A5014742790 @default.
- W2095230904 hasAuthorship W2095230904A5039962635 @default.
- W2095230904 hasConcept C127313418 @default.
- W2095230904 hasConcept C139347428 @default.
- W2095230904 hasConcept C147717901 @default.
- W2095230904 hasConcept C149347711 @default.
- W2095230904 hasConcept C151730666 @default.
- W2095230904 hasConcept C167284885 @default.
- W2095230904 hasConcept C17409809 @default.