Matches in SemOpenAlex for { <https://semopenalex.org/work/W2095283401> ?p ?o ?g. }
- W2095283401 endingPage "5302" @default.
- W2095283401 startingPage "5290" @default.
- W2095283401 abstract "Accurate and automated lung field (LF) segmentation in high‐resolution computed tomography (HRCT) is highly challenged by the presence of pathologies affecting lung borders, also affecting the performance of computer‐aided diagnosis (CAD) schemes. In this work, a two‐dimensional LF segmentation algorithm adapted to interstitial pneumonia (IP) patterns is presented. The algorithm employs ‐means clustering followed by a filling operation to obtain an initial LF order estimate. The final LF border is obtained by an iterative support vector machine neighborhood labeling of border pixels based on gray level and wavelet coefficient statistics features. A second feature set based on gray level averaging and gradient features was also investigated to evaluate its effect on segmentation performance of the proposed method. The proposed method is evaluated on a dataset of 22 HRCT cases spanning a range of IP patterns such as ground glass, reticular, and honeycombing. The accuracy of the method is assessed using area overlap and shape differentiation metrics ( , , and ), by comparing automatically derived lung borders to manually traced ones, and further compared to a gray level thresholding‐based (GLT‐based) method. Accuracy of the methods evaluated is also compared to interobserver variability. The proposed method incorporating gray level and wavelet coefficient statistics demonstrated the highest segmentation accuracy, averaged over left and right LFs ( , , , and ), which is statistically significant (two‐tailed student's test for paired data, ) with respect to all metrics considered as compared to the proposed method incorporating gray level averaging and gradient features ( , , , and ) and the GLT‐based method ( , , , and ). The performance of the three segmentation methods, although decreased as IP pattern severity level (mild, moderate, and severe) was increased, did not demonstrate statistically significant difference (two‐tailed student's test for unpaired data, for all metrics considered). Finally, the accuracy of the proposed method, based on gray level and wavelet coefficient statistics ranges within interobserver variability. The proposed segmentation method could be used as an initial stage of a CAD scheme for IP patterns." @default.
- W2095283401 created "2016-06-24" @default.
- W2095283401 creator A5006851041 @default.
- W2095283401 creator A5023540625 @default.
- W2095283401 creator A5044692030 @default.
- W2095283401 creator A5064842226 @default.
- W2095283401 creator A5076303709 @default.
- W2095283401 creator A5078051434 @default.
- W2095283401 date "2008-11-06" @default.
- W2095283401 modified "2023-09-27" @default.
- W2095283401 title "Texture classification-based segmentation of lung affected by interstitial pneumonia in high-resolution CT" @default.
- W2095283401 cites W2008428440 @default.
- W2095283401 cites W2012253355 @default.
- W2095283401 cites W2013465174 @default.
- W2095283401 cites W2016672701 @default.
- W2095283401 cites W2027449463 @default.
- W2095283401 cites W2041719944 @default.
- W2095283401 cites W2043448785 @default.
- W2095283401 cites W2044465660 @default.
- W2095283401 cites W2046649403 @default.
- W2095283401 cites W2059710145 @default.
- W2095283401 cites W2067372744 @default.
- W2095283401 cites W2074214652 @default.
- W2095283401 cites W2083432437 @default.
- W2095283401 cites W2085206647 @default.
- W2095283401 cites W2085652537 @default.
- W2095283401 cites W2112478811 @default.
- W2095283401 cites W2120085308 @default.
- W2095283401 cites W2122737351 @default.
- W2095283401 cites W2134152745 @default.
- W2095283401 cites W2140775860 @default.
- W2095283401 cites W2142382161 @default.
- W2095283401 cites W2143628522 @default.
- W2095283401 cites W2154997843 @default.
- W2095283401 cites W2156061276 @default.
- W2095283401 cites W2156909104 @default.
- W2095283401 cites W2157825442 @default.
- W2095283401 cites W2158001550 @default.
- W2095283401 cites W2161912327 @default.
- W2095283401 cites W2168184228 @default.
- W2095283401 cites W2319352096 @default.
- W2095283401 cites W4214540058 @default.
- W2095283401 cites W4229940379 @default.
- W2095283401 doi "https://doi.org/10.1118/1.3003066" @default.
- W2095283401 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19175088" @default.
- W2095283401 hasPublicationYear "2008" @default.
- W2095283401 type Work @default.
- W2095283401 sameAs 2095283401 @default.
- W2095283401 citedByCount "58" @default.
- W2095283401 countsByYear W20952834012012 @default.
- W2095283401 countsByYear W20952834012013 @default.
- W2095283401 countsByYear W20952834012014 @default.
- W2095283401 countsByYear W20952834012015 @default.
- W2095283401 countsByYear W20952834012016 @default.
- W2095283401 countsByYear W20952834012017 @default.
- W2095283401 countsByYear W20952834012018 @default.
- W2095283401 countsByYear W20952834012019 @default.
- W2095283401 countsByYear W20952834012020 @default.
- W2095283401 countsByYear W20952834012021 @default.
- W2095283401 countsByYear W20952834012022 @default.
- W2095283401 crossrefType "journal-article" @default.
- W2095283401 hasAuthorship W2095283401A5006851041 @default.
- W2095283401 hasAuthorship W2095283401A5023540625 @default.
- W2095283401 hasAuthorship W2095283401A5044692030 @default.
- W2095283401 hasAuthorship W2095283401A5064842226 @default.
- W2095283401 hasAuthorship W2095283401A5076303709 @default.
- W2095283401 hasAuthorship W2095283401A5078051434 @default.
- W2095283401 hasConcept C115961682 @default.
- W2095283401 hasConcept C12267149 @default.
- W2095283401 hasConcept C124504099 @default.
- W2095283401 hasConcept C126322002 @default.
- W2095283401 hasConcept C153180895 @default.
- W2095283401 hasConcept C154945302 @default.
- W2095283401 hasConcept C160633673 @default.
- W2095283401 hasConcept C191178318 @default.
- W2095283401 hasConcept C2777714996 @default.
- W2095283401 hasConcept C2778341716 @default.
- W2095283401 hasConcept C2779412668 @default.
- W2095283401 hasConcept C31972630 @default.
- W2095283401 hasConcept C33923547 @default.
- W2095283401 hasConcept C41008148 @default.
- W2095283401 hasConcept C47432892 @default.
- W2095283401 hasConcept C71924100 @default.
- W2095283401 hasConcept C89600930 @default.
- W2095283401 hasConceptScore W2095283401C115961682 @default.
- W2095283401 hasConceptScore W2095283401C12267149 @default.
- W2095283401 hasConceptScore W2095283401C124504099 @default.
- W2095283401 hasConceptScore W2095283401C126322002 @default.
- W2095283401 hasConceptScore W2095283401C153180895 @default.
- W2095283401 hasConceptScore W2095283401C154945302 @default.
- W2095283401 hasConceptScore W2095283401C160633673 @default.
- W2095283401 hasConceptScore W2095283401C191178318 @default.
- W2095283401 hasConceptScore W2095283401C2777714996 @default.
- W2095283401 hasConceptScore W2095283401C2778341716 @default.
- W2095283401 hasConceptScore W2095283401C2779412668 @default.
- W2095283401 hasConceptScore W2095283401C31972630 @default.
- W2095283401 hasConceptScore W2095283401C33923547 @default.
- W2095283401 hasConceptScore W2095283401C41008148 @default.