Matches in SemOpenAlex for { <https://semopenalex.org/work/W2095301785> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2095301785 abstract "Female breast cancer is a major cause of deaths in occidental countries. Computer-aided Detection (CAD) systems can aid radiologists to increase diagnostic accuracy. In this work, we present a comparison between two classifiers applied to the separation of normal and abnormal breast tissues from mammograms. The purpose of the comparison is to select the best prediction technique to be part of a CAD system. Each region of interest is classified through a Support Vector Machine (SVM) and a Bayesian Neural Network (BNN) as normal or abnormal region. SVM is a machine-learning method, based on the principle of structural risk minimization, which shows good performance when applied to data outside the training set. A Bayesian Neural Network is a classifier that joins traditional neural networks theory and Bayesian inference. We use a set of measures obtained by the application of the semivariogram, semimadogram, covariogram, and correlogram functions to the characterization of breast tissue as normal or abnormal. The results show that SVM presents best performance for the classification of breast tissues in mammographic images. The tests indicate that SVM has more generalization power than the BNN classifier. BNN has a sensibility of 76.19% and a specificity of 79.31%, while SVM presents a sensibility of 74.07% and a specificity of 98.77%. The accuracy rate for tests is 78.70% and 92.59% for BNN and SVM, respectively." @default.
- W2095301785 created "2016-06-24" @default.
- W2095301785 creator A5006289694 @default.
- W2095301785 creator A5014448875 @default.
- W2095301785 creator A5027206228 @default.
- W2095301785 creator A5057598901 @default.
- W2095301785 date "2010-12-01" @default.
- W2095301785 modified "2023-09-26" @default.
- W2095301785 title "COMPARISON OF SUPPORT VECTOR MACHINES AND BAYESIAN NEURAL NETWORKS PERFORMANCE FOR BREAST TISSUES USING GEOSTATISTICAL FUNCTIONS IN MAMMOGRAPHIC IMAGES" @default.
- W2095301785 cites W1567512734 @default.
- W2095301785 cites W1971967553 @default.
- W2095301785 cites W2007870306 @default.
- W2095301785 cites W2020040086 @default.
- W2095301785 cites W2024783313 @default.
- W2095301785 cites W2026574367 @default.
- W2095301785 cites W2032831428 @default.
- W2095301785 cites W2045331387 @default.
- W2095301785 cites W2073171774 @default.
- W2095301785 cites W2108701757 @default.
- W2095301785 cites W2111051539 @default.
- W2095301785 cites W2113115183 @default.
- W2095301785 cites W2115589652 @default.
- W2095301785 cites W2138309709 @default.
- W2095301785 cites W68682081 @default.
- W2095301785 doi "https://doi.org/10.1142/s1469026810002914" @default.
- W2095301785 hasPublicationYear "2010" @default.
- W2095301785 type Work @default.
- W2095301785 sameAs 2095301785 @default.
- W2095301785 citedByCount "3" @default.
- W2095301785 countsByYear W20953017852013 @default.
- W2095301785 countsByYear W20953017852014 @default.
- W2095301785 countsByYear W20953017852022 @default.
- W2095301785 crossrefType "journal-article" @default.
- W2095301785 hasAuthorship W2095301785A5006289694 @default.
- W2095301785 hasAuthorship W2095301785A5014448875 @default.
- W2095301785 hasAuthorship W2095301785A5027206228 @default.
- W2095301785 hasAuthorship W2095301785A5057598901 @default.
- W2095301785 hasConcept C119857082 @default.
- W2095301785 hasConcept C12267149 @default.
- W2095301785 hasConcept C127413603 @default.
- W2095301785 hasConcept C153180895 @default.
- W2095301785 hasConcept C154507838 @default.
- W2095301785 hasConcept C154945302 @default.
- W2095301785 hasConcept C194789388 @default.
- W2095301785 hasConcept C196070930 @default.
- W2095301785 hasConcept C199639397 @default.
- W2095301785 hasConcept C41008148 @default.
- W2095301785 hasConcept C50644808 @default.
- W2095301785 hasConcept C95623464 @default.
- W2095301785 hasConceptScore W2095301785C119857082 @default.
- W2095301785 hasConceptScore W2095301785C12267149 @default.
- W2095301785 hasConceptScore W2095301785C127413603 @default.
- W2095301785 hasConceptScore W2095301785C153180895 @default.
- W2095301785 hasConceptScore W2095301785C154507838 @default.
- W2095301785 hasConceptScore W2095301785C154945302 @default.
- W2095301785 hasConceptScore W2095301785C194789388 @default.
- W2095301785 hasConceptScore W2095301785C196070930 @default.
- W2095301785 hasConceptScore W2095301785C199639397 @default.
- W2095301785 hasConceptScore W2095301785C41008148 @default.
- W2095301785 hasConceptScore W2095301785C50644808 @default.
- W2095301785 hasConceptScore W2095301785C95623464 @default.
- W2095301785 hasLocation W20953017851 @default.
- W2095301785 hasOpenAccess W2095301785 @default.
- W2095301785 hasPrimaryLocation W20953017851 @default.
- W2095301785 hasRelatedWork W147040893 @default.
- W2095301785 hasRelatedWork W1544472284 @default.
- W2095301785 hasRelatedWork W1845298205 @default.
- W2095301785 hasRelatedWork W2000213588 @default.
- W2095301785 hasRelatedWork W2068848953 @default.
- W2095301785 hasRelatedWork W2071466165 @default.
- W2095301785 hasRelatedWork W2078569477 @default.
- W2095301785 hasRelatedWork W2098715237 @default.
- W2095301785 hasRelatedWork W2116278801 @default.
- W2095301785 hasRelatedWork W2123006328 @default.
- W2095301785 hasRelatedWork W2129900751 @default.
- W2095301785 hasRelatedWork W2134704207 @default.
- W2095301785 hasRelatedWork W2296193779 @default.
- W2095301785 hasRelatedWork W2373452647 @default.
- W2095301785 hasRelatedWork W2529446434 @default.
- W2095301785 hasRelatedWork W2607226804 @default.
- W2095301785 hasRelatedWork W2956307551 @default.
- W2095301785 hasRelatedWork W2993077515 @default.
- W2095301785 hasRelatedWork W3096929793 @default.
- W2095301785 hasRelatedWork W769468248 @default.
- W2095301785 isParatext "false" @default.
- W2095301785 isRetracted "false" @default.
- W2095301785 magId "2095301785" @default.
- W2095301785 workType "article" @default.