Matches in SemOpenAlex for { <https://semopenalex.org/work/W2095302534> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2095302534 abstract "Transductive learning is a special case of semi-supervised learning, where class labels to the test patterns alone are found. That is, the domain of the learner is the test set alone. Often, transductive learners achieve a better classification accuracy, since additional information in the form of test patterns location in the feature-space is used. For several inductive learners, there exists corresponding transductive learners; like for SVMs there exists transductive SVMs (TSVMs). For nearest neighbor based classifiers, their corresponding transductive methods are achieved through graph mincuts or spectral graph mincuts. It is shown that these solutions achieve low leave-one-out cross-validation (LOOCV) error with respect to nearest neighbor based classifiers. It is formally shown in the paper that, through a clustering method, it is possible to get various solutions having zero LOOCV error with respect to nearest neighbor based classifiers. Some solutions can have low classification accuracy. The paper proposes, instead of optimizing LOOCV error, to optimize a margin like criterion. This criterion is based on the observation that similar labeled patterns should be nearer to each other, while dissimilar labeled patterns should be far away. An approximate method to solve the proposed optimization problem is given in the paper which is called selective incremental transductive nearest neighbor classifier (SI-TNNC). SI-TNNC finds the test pattern from the test set which is very close to one class of training patterns and at the same time very much away from the other class of training examples. The selected test pattern is given its nearest neighbor's label and is added to the training set. This pattern is removed from the test set. The process is repeated with the next best test pattern, and is stopped only when the test set becomes empty. An algorithm to implement SI-TNNC method is given in the paper which has a quadratic time complexity. Other related solutions have either cubic time complexity or are NP-hard. Experimentally, using several standard data-sets, it is shown that the proposed transductive learner achieves on-par or better classification accuracy than its related competitors." @default.
- W2095302534 created "2016-06-24" @default.
- W2095302534 creator A5057212076 @default.
- W2095302534 creator A5063698395 @default.
- W2095302534 creator A5072822981 @default.
- W2095302534 creator A5090571292 @default.
- W2095302534 date "2011-09-01" @default.
- W2095302534 modified "2023-09-22" @default.
- W2095302534 title "A selective incremental approach for transductive nearest neighbor classification" @default.
- W2095302534 cites W13936347 @default.
- W2095302534 cites W1479807131 @default.
- W2095302534 cites W1506281249 @default.
- W2095302534 cites W1530699444 @default.
- W2095302534 cites W1542945334 @default.
- W2095302534 cites W1563088657 @default.
- W2095302534 cites W1585385982 @default.
- W2095302534 cites W1992419399 @default.
- W2095302534 cites W2061526129 @default.
- W2095302534 cites W2107008379 @default.
- W2095302534 cites W2111557120 @default.
- W2095302534 cites W2139823104 @default.
- W2095302534 cites W2140190241 @default.
- W2095302534 cites W2148603752 @default.
- W2095302534 cites W2154455818 @default.
- W2095302534 cites W2295428206 @default.
- W2095302534 cites W2752885492 @default.
- W2095302534 cites W3112020351 @default.
- W2095302534 doi "https://doi.org/10.1109/raics.2011.6069306" @default.
- W2095302534 hasPublicationYear "2011" @default.
- W2095302534 type Work @default.
- W2095302534 sameAs 2095302534 @default.
- W2095302534 citedByCount "0" @default.
- W2095302534 crossrefType "proceedings-article" @default.
- W2095302534 hasAuthorship W2095302534A5057212076 @default.
- W2095302534 hasAuthorship W2095302534A5063698395 @default.
- W2095302534 hasAuthorship W2095302534A5072822981 @default.
- W2095302534 hasAuthorship W2095302534A5090571292 @default.
- W2095302534 hasConcept C113238511 @default.
- W2095302534 hasConcept C119857082 @default.
- W2095302534 hasConcept C12267149 @default.
- W2095302534 hasConcept C132525143 @default.
- W2095302534 hasConcept C153180895 @default.
- W2095302534 hasConcept C154945302 @default.
- W2095302534 hasConcept C169903167 @default.
- W2095302534 hasConcept C33923547 @default.
- W2095302534 hasConcept C41008148 @default.
- W2095302534 hasConcept C73555534 @default.
- W2095302534 hasConcept C774472 @default.
- W2095302534 hasConcept C80444323 @default.
- W2095302534 hasConcept C83665646 @default.
- W2095302534 hasConcept C94475309 @default.
- W2095302534 hasConcept C95623464 @default.
- W2095302534 hasConceptScore W2095302534C113238511 @default.
- W2095302534 hasConceptScore W2095302534C119857082 @default.
- W2095302534 hasConceptScore W2095302534C12267149 @default.
- W2095302534 hasConceptScore W2095302534C132525143 @default.
- W2095302534 hasConceptScore W2095302534C153180895 @default.
- W2095302534 hasConceptScore W2095302534C154945302 @default.
- W2095302534 hasConceptScore W2095302534C169903167 @default.
- W2095302534 hasConceptScore W2095302534C33923547 @default.
- W2095302534 hasConceptScore W2095302534C41008148 @default.
- W2095302534 hasConceptScore W2095302534C73555534 @default.
- W2095302534 hasConceptScore W2095302534C774472 @default.
- W2095302534 hasConceptScore W2095302534C80444323 @default.
- W2095302534 hasConceptScore W2095302534C83665646 @default.
- W2095302534 hasConceptScore W2095302534C94475309 @default.
- W2095302534 hasConceptScore W2095302534C95623464 @default.
- W2095302534 hasLocation W20953025341 @default.
- W2095302534 hasOpenAccess W2095302534 @default.
- W2095302534 hasPrimaryLocation W20953025341 @default.
- W2095302534 hasRelatedWork W1522540261 @default.
- W2095302534 hasRelatedWork W1533699881 @default.
- W2095302534 hasRelatedWork W1592091216 @default.
- W2095302534 hasRelatedWork W1623816753 @default.
- W2095302534 hasRelatedWork W1983952580 @default.
- W2095302534 hasRelatedWork W1997168891 @default.
- W2095302534 hasRelatedWork W2003048487 @default.
- W2095302534 hasRelatedWork W2018951779 @default.
- W2095302534 hasRelatedWork W2022696704 @default.
- W2095302534 hasRelatedWork W2050500507 @default.
- W2095302534 hasRelatedWork W2091152624 @default.
- W2095302534 hasRelatedWork W2111008470 @default.
- W2095302534 hasRelatedWork W2130556178 @default.
- W2095302534 hasRelatedWork W2164744189 @default.
- W2095302534 hasRelatedWork W2165828254 @default.
- W2095302534 hasRelatedWork W2172189177 @default.
- W2095302534 hasRelatedWork W2377982443 @default.
- W2095302534 hasRelatedWork W2552490453 @default.
- W2095302534 hasRelatedWork W2981049613 @default.
- W2095302534 hasRelatedWork W2999387668 @default.
- W2095302534 isParatext "false" @default.
- W2095302534 isRetracted "false" @default.
- W2095302534 magId "2095302534" @default.
- W2095302534 workType "article" @default.