Matches in SemOpenAlex for { <https://semopenalex.org/work/W2095377260> ?p ?o ?g. }
- W2095377260 endingPage "626" @default.
- W2095377260 startingPage "592" @default.
- W2095377260 abstract "Extensive magnetic field observations together with crucial plasma measurements by the Explorer 35 lunar orbiter and Apollo surface and orbital experiments have established the basic nature of the moon's interaction with the solar wind and interplanetary magnetic field. The effective absorption of the incident solar wind by the moon creates a plasma void or cavity behind the moon. The cavity‐associated magnetic signature is characterized by an enhancement in magnetic field magnitude B within the cavity as compared with the mean level of B in the surrounding interplanetary plasma and dips or decreases in B near the cavity boundaries with the solar wind. The axis of the lunar wake is aberrated from the moon‐sun line by the relative velocity of the solar wind with respect to the moon, and the cross section of the wake is elliptical, reflecting the anisotropic propagation of magnetoacoustic waves in the solar wind. Enhancements in B are often observed just external, i.e., on the solar wind side, of the rarefaction‐associated dips in the field magnitude. These are of perturbation magnitude at the altitude of Explorer 35, whereas at the low height of the subsatellites they are often large field increases or limb compressions that occur either just upstream of or directly above lunar limbs. Particular surface regions of the moon seem more effective than others as a source of the limb compressions; the pertinent regional property is likely to be remanent magnetization. Propagation of the limb disturbances downstream from the source and the efficacy with which a regional property can create a disturbance in the solar wind flow past the moon's limb depend on properties of the plasma and interplanetary magnetic field. The main enhancement of B in the shadow region behind the moon is a more conspicuous feature of the magnetosheath interaction, whereas the field strength dips and the limb compressions become more difficult to identify in the highly variable state of the magnetic field. In the lobes of the geomagnetic tail, remanent lunar magnetic fields are readily detected at the subsatellite altitude. There is a distinct structure associated with the average field magnitude measured by the Apollo 15 subsatellite in the plasma sheet of the geomagnetic tail; B is enhanced over the day side quadrant of the subsatellite orbit. This variation in the average magnitude of the magnetic field may be associated with the drift of plasma sheet particles toward the earth, creating a wake region centered approximately on the day side orbital quadrant of the subsatellite. Alternatively, flux tube depletion earthward of the moon may explain the observed day side enhancement of average magnetic field magnitude. Apollo particle and field measurements on the lunar surface have provided evidence of a regional interaction of the highly conducting solar wind with lunar remanent magnetic fields. Simultaneous Ogo 5, Vela 5, and Apollo 12 spectrometer data of ion density and velocity taken when the Ogo and Vela satellites were in the solar wind and the Apollo spectrometer was on the lunar day side also exposed to solar wind plasma show that the proton velocity is smaller and the proton density is larger at the Apollo site than in the free stream solar wind, a result of proton deceleration at the site by an electric field established via the plasma‐remanent magnetic field interaction. Simultaneous plasma and magnetic field data, from the spectrometer and the lunar surface magnetometer at the Apollo 12 location, show the compression of the local remanent field by large solar wind and magnetosheath plasma dynamic pressures." @default.
- W2095377260 created "2016-06-24" @default.
- W2095377260 creator A5041406082 @default.
- W2095377260 creator A5042117991 @default.
- W2095377260 date "1974-11-01" @default.
- W2095377260 modified "2023-10-12" @default.
- W2095377260 title "Observations of Moon‐plasma interactions by orbital and surface experiments" @default.
- W2095377260 cites W1504477331 @default.
- W2095377260 cites W1529803140 @default.
- W2095377260 cites W1588065408 @default.
- W2095377260 cites W1967248169 @default.
- W2095377260 cites W1968933078 @default.
- W2095377260 cites W1969352845 @default.
- W2095377260 cites W1971653138 @default.
- W2095377260 cites W1975446743 @default.
- W2095377260 cites W1975500116 @default.
- W2095377260 cites W1977985120 @default.
- W2095377260 cites W1982867950 @default.
- W2095377260 cites W1985906685 @default.
- W2095377260 cites W1989120348 @default.
- W2095377260 cites W1989384532 @default.
- W2095377260 cites W1991276278 @default.
- W2095377260 cites W1994184065 @default.
- W2095377260 cites W1994759106 @default.
- W2095377260 cites W1994854950 @default.
- W2095377260 cites W1996049372 @default.
- W2095377260 cites W1998036598 @default.
- W2095377260 cites W1998813540 @default.
- W2095377260 cites W1999117535 @default.
- W2095377260 cites W1999874073 @default.
- W2095377260 cites W2001577980 @default.
- W2095377260 cites W2004035133 @default.
- W2095377260 cites W2004121628 @default.
- W2095377260 cites W2005930950 @default.
- W2095377260 cites W2006745039 @default.
- W2095377260 cites W2007140610 @default.
- W2095377260 cites W2007721814 @default.
- W2095377260 cites W2008000812 @default.
- W2095377260 cites W2011494542 @default.
- W2095377260 cites W2013639245 @default.
- W2095377260 cites W2015130702 @default.
- W2095377260 cites W2015666765 @default.
- W2095377260 cites W2016912680 @default.
- W2095377260 cites W2017636402 @default.
- W2095377260 cites W2019090623 @default.
- W2095377260 cites W2019237217 @default.
- W2095377260 cites W2019713320 @default.
- W2095377260 cites W2025199321 @default.
- W2095377260 cites W2029574419 @default.
- W2095377260 cites W2030324346 @default.
- W2095377260 cites W2030693351 @default.
- W2095377260 cites W2031698483 @default.
- W2095377260 cites W2033120221 @default.
- W2095377260 cites W2034539941 @default.
- W2095377260 cites W2036430667 @default.
- W2095377260 cites W2042236650 @default.
- W2095377260 cites W2044611088 @default.
- W2095377260 cites W2048414330 @default.
- W2095377260 cites W2049388597 @default.
- W2095377260 cites W2050736203 @default.
- W2095377260 cites W2051050896 @default.
- W2095377260 cites W2055627526 @default.
- W2095377260 cites W2056532572 @default.
- W2095377260 cites W2059720704 @default.
- W2095377260 cites W2064985937 @default.
- W2095377260 cites W2068004203 @default.
- W2095377260 cites W2069426344 @default.
- W2095377260 cites W2069471186 @default.
- W2095377260 cites W2070576490 @default.
- W2095377260 cites W2071217802 @default.
- W2095377260 cites W2072438362 @default.
- W2095377260 cites W2072858867 @default.
- W2095377260 cites W2074978874 @default.
- W2095377260 cites W2074989975 @default.
- W2095377260 cites W2077628476 @default.
- W2095377260 cites W2081070754 @default.
- W2095377260 cites W2081156115 @default.
- W2095377260 cites W2084154901 @default.
- W2095377260 cites W2084593215 @default.
- W2095377260 cites W2084891855 @default.
- W2095377260 cites W2087856191 @default.
- W2095377260 cites W2087969830 @default.
- W2095377260 cites W2091867426 @default.
- W2095377260 cites W2091937835 @default.
- W2095377260 cites W2093960665 @default.
- W2095377260 cites W2094016239 @default.
- W2095377260 cites W2094531792 @default.
- W2095377260 cites W2094579597 @default.
- W2095377260 cites W2097662138 @default.
- W2095377260 cites W2098410541 @default.
- W2095377260 cites W2100662803 @default.
- W2095377260 cites W2102979622 @default.
- W2095377260 cites W2106875365 @default.
- W2095377260 cites W2125225368 @default.
- W2095377260 cites W2128995045 @default.
- W2095377260 cites W2132207785 @default.
- W2095377260 cites W2136100039 @default.
- W2095377260 cites W2136332707 @default.