Matches in SemOpenAlex for { <https://semopenalex.org/work/W2095442568> ?p ?o ?g. }
- W2095442568 endingPage "23" @default.
- W2095442568 startingPage "16" @default.
- W2095442568 abstract "•Drug and target discovery will benefit from cell line genomic characterization. •Quality cell models and selective small molecules are critical tools for success. •The cancer field has used this approach, but other diseases would also benefit. Over the past decade, tremendous progress in high-throughput small molecule-screening methods has facilitated the rapid expansion of phenotype-based data. Parallel advances in genomic characterization methods have complemented these efforts by providing a growing list of annotated cell line features. Together, these developments have paved the way for feature-based identification of novel, exploitable cellular dependencies, subsequently expanding our therapeutic toolkit in cancer and other diseases. Here, we provide an overview of the evolution of phenotypic small-molecule profiling and discuss the most significant and recent profiling and analytical efforts, their impact on the field, and their clinical ramifications. We additionally provide a perspective for future developments in phenotypic profiling efforts guided by genomic science. Over the past decade, tremendous progress in high-throughput small molecule-screening methods has facilitated the rapid expansion of phenotype-based data. Parallel advances in genomic characterization methods have complemented these efforts by providing a growing list of annotated cell line features. Together, these developments have paved the way for feature-based identification of novel, exploitable cellular dependencies, subsequently expanding our therapeutic toolkit in cancer and other diseases. Here, we provide an overview of the evolution of phenotypic small-molecule profiling and discuss the most significant and recent profiling and analytical efforts, their impact on the field, and their clinical ramifications. We additionally provide a perspective for future developments in phenotypic profiling efforts guided by genomic science. small molecule perturbagens with previously known and annotated mechanism(s) of action a project led by the Broad Institute, the Novartis Institute for Biomedical Research, and the Genomics Institute of the Novartis Research Foundation, focused on the genomic and pharmacologic characterization of a set of approximately 1000 human cancer cell lines (http://www.broadinstitute.org/ccle/home). pathway or process on which a particular cell type or cell state depends for survival. measurement of the protein(s) to which a small molecule binds, directly or indirectly. a computational method to determine the enrichment of a defined set of genes in the gene-expression analysis of two biological states. The collection of gene sets under consideration can be derived experimentally, computationally, or by biological function. a graph-theoretic construct that expresses relations between proteins based on evidence of interaction between them (may be physical interaction, coregulation, or combinations of evidence). the identification of novel chemical matter with similar biological function, but different structure, to that of a starting small molecule. peripheral B lymphocytes transformed by EBV, these cells are often useful as a source of DNA and cells from individuals for biological characterization. mathematical technique allowing connection of two variables via a third shared variable that connects to each one. an analysis technique that merges data from separate studies of the same subject(s) into a single analysis. direct measurement of the levels of small-molecule metabolites in a cellular system under various conditions. a program operated by the National Institutes of Health focused on the discovery of novel chemical probes of biological processes and disease states (http://mli.nih.gov/mli/mlp-overview/) mathematical technique that combines information from multiple predictive variables to estimate the value of a predicted variable. a long-standing project operated by the National Cancer Institute involving the screening of a collection of 60 cancer cell lines for growth inhibition after treatment with small molecules of interest (http://dtp.nci.nih.gov/branches/btb/ivclsp.html). using performance of small molecules across multiple assays or using multiple features as a measure of their similarity (instead of, for example, chemical structure similarity). a quantitative measurement of phenotype spanning multiple variables, such as gene-expression in response to compound treatment. a genetic determinant of a quantitative trait of an organism, such as size. specific set of multiple features reporting on a disease state or action of a perturbagen. unbiased measurement of multiple cellular features reporting on small-molecule action. unbiased measurement of multiple gene-expression features (usually as transcripts, possibly genome wide)." @default.
- W2095442568 created "2016-06-24" @default.
- W2095442568 creator A5021915671 @default.
- W2095442568 creator A5022484206 @default.
- W2095442568 creator A5075249814 @default.
- W2095442568 date "2015-01-01" @default.
- W2095442568 modified "2023-10-18" @default.
- W2095442568 title "Integrating phenotypic small-molecule profiling and human genetics: the next phase in drug discovery" @default.
- W2095442568 cites W168907754 @default.
- W2095442568 cites W19078547 @default.
- W2095442568 cites W1965440903 @default.
- W2095442568 cites W1969312124 @default.
- W2095442568 cites W1971947883 @default.
- W2095442568 cites W1981082529 @default.
- W2095442568 cites W1987219048 @default.
- W2095442568 cites W1998096683 @default.
- W2095442568 cites W1998202992 @default.
- W2095442568 cites W2003840294 @default.
- W2095442568 cites W2004380688 @default.
- W2095442568 cites W2007953805 @default.
- W2095442568 cites W2008345619 @default.
- W2095442568 cites W2009259923 @default.
- W2095442568 cites W2009642188 @default.
- W2095442568 cites W2011474181 @default.
- W2095442568 cites W2017187984 @default.
- W2095442568 cites W2019241541 @default.
- W2095442568 cites W2022202723 @default.
- W2095442568 cites W2023994677 @default.
- W2095442568 cites W2026548544 @default.
- W2095442568 cites W2033182904 @default.
- W2095442568 cites W2043274957 @default.
- W2095442568 cites W2043398720 @default.
- W2095442568 cites W2045721491 @default.
- W2095442568 cites W2050081822 @default.
- W2095442568 cites W2057529572 @default.
- W2095442568 cites W2058401000 @default.
- W2095442568 cites W2058711722 @default.
- W2095442568 cites W2060801754 @default.
- W2095442568 cites W2062518664 @default.
- W2095442568 cites W2062877650 @default.
- W2095442568 cites W2065731136 @default.
- W2095442568 cites W2066998725 @default.
- W2095442568 cites W2070467901 @default.
- W2095442568 cites W2077983342 @default.
- W2095442568 cites W2080686146 @default.
- W2095442568 cites W2087312216 @default.
- W2095442568 cites W2087729559 @default.
- W2095442568 cites W2088714934 @default.
- W2095442568 cites W2091552622 @default.
- W2095442568 cites W2098426299 @default.
- W2095442568 cites W2099557169 @default.
- W2095442568 cites W2103563973 @default.
- W2095442568 cites W2104954848 @default.
- W2095442568 cites W2109363337 @default.
- W2095442568 cites W2109378990 @default.
- W2095442568 cites W2110831567 @default.
- W2095442568 cites W2111115182 @default.
- W2095442568 cites W2114748166 @default.
- W2095442568 cites W2121604817 @default.
- W2095442568 cites W2122128696 @default.
- W2095442568 cites W2124993955 @default.
- W2095442568 cites W2125789330 @default.
- W2095442568 cites W2126524529 @default.
- W2095442568 cites W2128445526 @default.
- W2095442568 cites W2130410032 @default.
- W2095442568 cites W2134709447 @default.
- W2095442568 cites W2142739240 @default.
- W2095442568 cites W2144963196 @default.
- W2095442568 cites W2146157298 @default.
- W2095442568 cites W2146264532 @default.
- W2095442568 cites W2147443169 @default.
- W2095442568 cites W2148070020 @default.
- W2095442568 cites W2151499551 @default.
- W2095442568 cites W2152883907 @default.
- W2095442568 cites W2153848946 @default.
- W2095442568 cites W2154507552 @default.
- W2095442568 cites W2156052827 @default.
- W2095442568 cites W2156078931 @default.
- W2095442568 cites W2158230102 @default.
- W2095442568 cites W2158416296 @default.
- W2095442568 cites W2159220884 @default.
- W2095442568 cites W2160676466 @default.
- W2095442568 cites W2167395325 @default.
- W2095442568 cites W2171228244 @default.
- W2095442568 cites W2217809488 @default.
- W2095442568 cites W2320983896 @default.
- W2095442568 doi "https://doi.org/10.1016/j.tig.2014.11.002" @default.
- W2095442568 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4281276" @default.
- W2095442568 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25498789" @default.
- W2095442568 hasPublicationYear "2015" @default.
- W2095442568 type Work @default.
- W2095442568 sameAs 2095442568 @default.
- W2095442568 citedByCount "15" @default.
- W2095442568 countsByYear W20954425682015 @default.
- W2095442568 countsByYear W20954425682016 @default.
- W2095442568 countsByYear W20954425682017 @default.
- W2095442568 countsByYear W20954425682018 @default.
- W2095442568 countsByYear W20954425682019 @default.