Matches in SemOpenAlex for { <https://semopenalex.org/work/W2095452022> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2095452022 endingPage "114" @default.
- W2095452022 startingPage "95" @default.
- W2095452022 abstract "The paper reports about the development of a Named Entity Recognition (NER) system in Bengali using a tagged Bengali news corpus and the subsequent transliteration of the recognized Bengali Named Entities (NEs) into English. Three different models of the NER have been developed. A semi-supervised learning method has been adopted to develop the first two models, one without linguistic features (Model A) and the other with linguistic features (Model B). The third one (Model C) is based on statistical Hidden Markov Model. A modified joint-source channel model has been used along with a number of alternatives to generate the English transliterations of Bengali NEs and vice-versa. The transliteration models learn the mappings from the bilingual training sets optionally guided by linguistic knowledge in the form of conjuncts and diphthongs in Bengali and their representations in English. The NER system has demonstrated the highest average Recall, Precision and F-Score values of 89.62%, 78.67% and 83.79% respectively in Model C. Evaluation of the proposed transliteration models demonstrated that the modified joint source-channel model performs best in terms of evaluation metrics for person and location names for both Bengali to English (B2E) transliteration and English to Bengali transliteration (E2B). The use of the linguistic knowledge during training of the transliteration models improves performance." @default.
- W2095452022 created "2016-06-24" @default.
- W2095452022 creator A5006218020 @default.
- W2095452022 creator A5070618344 @default.
- W2095452022 creator A5085370631 @default.
- W2095452022 date "2007-08-10" @default.
- W2095452022 modified "2023-09-23" @default.
- W2095452022 title "Named Entity Recognition and transliteration in Bengali" @default.
- W2095452022 doi "https://doi.org/10.1075/li.30.1.07ekb" @default.
- W2095452022 hasPublicationYear "2007" @default.
- W2095452022 type Work @default.
- W2095452022 sameAs 2095452022 @default.
- W2095452022 citedByCount "37" @default.
- W2095452022 countsByYear W20954520222012 @default.
- W2095452022 countsByYear W20954520222013 @default.
- W2095452022 countsByYear W20954520222014 @default.
- W2095452022 countsByYear W20954520222016 @default.
- W2095452022 countsByYear W20954520222018 @default.
- W2095452022 countsByYear W20954520222020 @default.
- W2095452022 countsByYear W20954520222022 @default.
- W2095452022 crossrefType "journal-article" @default.
- W2095452022 hasAuthorship W2095452022A5006218020 @default.
- W2095452022 hasAuthorship W2095452022A5070618344 @default.
- W2095452022 hasAuthorship W2095452022A5085370631 @default.
- W2095452022 hasConcept C154945302 @default.
- W2095452022 hasConcept C19235068 @default.
- W2095452022 hasConcept C204321447 @default.
- W2095452022 hasConcept C2779581591 @default.
- W2095452022 hasConcept C28490314 @default.
- W2095452022 hasConcept C41008148 @default.
- W2095452022 hasConcept C520968082 @default.
- W2095452022 hasConcept C76978605 @default.
- W2095452022 hasConceptScore W2095452022C154945302 @default.
- W2095452022 hasConceptScore W2095452022C19235068 @default.
- W2095452022 hasConceptScore W2095452022C204321447 @default.
- W2095452022 hasConceptScore W2095452022C2779581591 @default.
- W2095452022 hasConceptScore W2095452022C28490314 @default.
- W2095452022 hasConceptScore W2095452022C41008148 @default.
- W2095452022 hasConceptScore W2095452022C520968082 @default.
- W2095452022 hasConceptScore W2095452022C76978605 @default.
- W2095452022 hasIssue "1" @default.
- W2095452022 hasLocation W20954520221 @default.
- W2095452022 hasOpenAccess W2095452022 @default.
- W2095452022 hasPrimaryLocation W20954520221 @default.
- W2095452022 hasRelatedWork W180823474 @default.
- W2095452022 hasRelatedWork W1984893924 @default.
- W2095452022 hasRelatedWork W1999127688 @default.
- W2095452022 hasRelatedWork W2069398544 @default.
- W2095452022 hasRelatedWork W2095452022 @default.
- W2095452022 hasRelatedWork W2757988102 @default.
- W2095452022 hasRelatedWork W3192589309 @default.
- W2095452022 hasRelatedWork W3204019825 @default.
- W2095452022 hasRelatedWork W39646728 @default.
- W2095452022 hasRelatedWork W825857799 @default.
- W2095452022 hasVolume "30" @default.
- W2095452022 isParatext "false" @default.
- W2095452022 isRetracted "false" @default.
- W2095452022 magId "2095452022" @default.
- W2095452022 workType "article" @default.