Matches in SemOpenAlex for { <https://semopenalex.org/work/W2095481105> ?p ?o ?g. }
- W2095481105 endingPage "68" @default.
- W2095481105 startingPage "51" @default.
- W2095481105 abstract "Cloud computing has established itself as an interesting computational model that provides a wide range of resources such as storage, databases and computing power for several types of users. Recently, the concept of cloud computing was extended with the concept of federated clouds where several resources from different cloud providers are inter-connected to perform a common action (e.g. execute a scientific workflow). Users can benefit from both single-provider and federated cloud environment to execute their scientific workflows since they can get the necessary amount of resources on demand. In several of these workflows, there is a demand for high performance and parallelism techniques since many activities are data and computing intensive and can execute for hours, days or even weeks. There are some Scientific Workflow Management Systems (SWfMS) that already provide parallelism capabilities for scientific workflows in single-provider cloud. Most of them rely on creating a virtual cluster to execute the workflow in parallel. However, they also rely on the user to estimate the amount of virtual machines to be allocated to create this virtual cluster. Most SWfMS use this initial virtual cluster configuration made by the user for the entire workflow execution. Dimensioning the virtual cluster to execute the workflow in parallel is then a top priority task since if the virtual cluster is under or over dimensioned it can impact on the workflow performance or increase (unnecessarily) financial costs. This dimensioning is far from trivial in a single-provider cloud and specially in federated clouds due to the huge number of virtual machine types to choose in each location and provider. In this article, we propose an approach named GraspCC-fed to produce the optimal (or near-optimal) estimation of the amount of virtual machines to allocate for each workflow. GraspCC-fed extends a previously proposed heuristic based on GRASP for executing standalone applications to consider scientific workflows executed in both single-provider and federated clouds. For the experiments, GraspCC-fed was coupled to an adapted version of SciCumulus workflow engine for federated clouds. This way, we believe that GraspCC-fed can be an important decision support tool for users and it can help determining an optimal configuration for the virtual cluster for parallel cloud-based scientific workflows." @default.
- W2095481105 created "2016-06-24" @default.
- W2095481105 creator A5013207221 @default.
- W2095481105 creator A5050455034 @default.
- W2095481105 creator A5064619721 @default.
- W2095481105 creator A5071494175 @default.
- W2095481105 date "2015-05-01" @default.
- W2095481105 modified "2023-09-26" @default.
- W2095481105 title "Optimizing virtual machine allocation for parallel scientific workflows in federated clouds" @default.
- W2095481105 cites W1503085769 @default.
- W2095481105 cites W1532114435 @default.
- W2095481105 cites W1590240800 @default.
- W2095481105 cites W1967029759 @default.
- W2095481105 cites W1977109114 @default.
- W2095481105 cites W1983704199 @default.
- W2095481105 cites W1999312542 @default.
- W2095481105 cites W2011105550 @default.
- W2095481105 cites W2012753837 @default.
- W2095481105 cites W2028817191 @default.
- W2095481105 cites W2038733937 @default.
- W2095481105 cites W2065088268 @default.
- W2095481105 cites W2075043513 @default.
- W2095481105 cites W2079429717 @default.
- W2095481105 cites W2095582338 @default.
- W2095481105 cites W2106882534 @default.
- W2095481105 cites W2110636406 @default.
- W2095481105 cites W2115570304 @default.
- W2095481105 cites W2117059491 @default.
- W2095481105 cites W2119362018 @default.
- W2095481105 cites W2120572648 @default.
- W2095481105 cites W2132926880 @default.
- W2095481105 cites W2133664094 @default.
- W2095481105 cites W2140872496 @default.
- W2095481105 cites W2141747524 @default.
- W2095481105 cites W2145527356 @default.
- W2095481105 cites W2146917903 @default.
- W2095481105 cites W2148459868 @default.
- W2095481105 cites W2168696662 @default.
- W2095481105 cites W2171074980 @default.
- W2095481105 cites W2183478929 @default.
- W2095481105 doi "https://doi.org/10.1016/j.future.2014.10.009" @default.
- W2095481105 hasPublicationYear "2015" @default.
- W2095481105 type Work @default.
- W2095481105 sameAs 2095481105 @default.
- W2095481105 citedByCount "41" @default.
- W2095481105 countsByYear W20954811052015 @default.
- W2095481105 countsByYear W20954811052016 @default.
- W2095481105 countsByYear W20954811052017 @default.
- W2095481105 countsByYear W20954811052018 @default.
- W2095481105 countsByYear W20954811052019 @default.
- W2095481105 countsByYear W20954811052020 @default.
- W2095481105 countsByYear W20954811052021 @default.
- W2095481105 countsByYear W20954811052022 @default.
- W2095481105 countsByYear W20954811052023 @default.
- W2095481105 crossrefType "journal-article" @default.
- W2095481105 hasAuthorship W2095481105A5013207221 @default.
- W2095481105 hasAuthorship W2095481105A5050455034 @default.
- W2095481105 hasAuthorship W2095481105A5064619721 @default.
- W2095481105 hasAuthorship W2095481105A5071494175 @default.
- W2095481105 hasConcept C111919701 @default.
- W2095481105 hasConcept C120314980 @default.
- W2095481105 hasConcept C127413603 @default.
- W2095481105 hasConcept C140824633 @default.
- W2095481105 hasConcept C146978453 @default.
- W2095481105 hasConcept C177212765 @default.
- W2095481105 hasConcept C188220564 @default.
- W2095481105 hasConcept C19612761 @default.
- W2095481105 hasConcept C25344961 @default.
- W2095481105 hasConcept C41008148 @default.
- W2095481105 hasConcept C77088390 @default.
- W2095481105 hasConcept C79974875 @default.
- W2095481105 hasConcept C89714869 @default.
- W2095481105 hasConceptScore W2095481105C111919701 @default.
- W2095481105 hasConceptScore W2095481105C120314980 @default.
- W2095481105 hasConceptScore W2095481105C127413603 @default.
- W2095481105 hasConceptScore W2095481105C140824633 @default.
- W2095481105 hasConceptScore W2095481105C146978453 @default.
- W2095481105 hasConceptScore W2095481105C177212765 @default.
- W2095481105 hasConceptScore W2095481105C188220564 @default.
- W2095481105 hasConceptScore W2095481105C19612761 @default.
- W2095481105 hasConceptScore W2095481105C25344961 @default.
- W2095481105 hasConceptScore W2095481105C41008148 @default.
- W2095481105 hasConceptScore W2095481105C77088390 @default.
- W2095481105 hasConceptScore W2095481105C79974875 @default.
- W2095481105 hasConceptScore W2095481105C89714869 @default.
- W2095481105 hasFunder F4320321091 @default.
- W2095481105 hasFunder F4320322025 @default.
- W2095481105 hasFunder F4320322749 @default.
- W2095481105 hasLocation W20954811051 @default.
- W2095481105 hasOpenAccess W2095481105 @default.
- W2095481105 hasPrimaryLocation W20954811051 @default.
- W2095481105 hasRelatedWork W1533256563 @default.
- W2095481105 hasRelatedWork W1887920917 @default.
- W2095481105 hasRelatedWork W2050637807 @default.
- W2095481105 hasRelatedWork W2143887500 @default.
- W2095481105 hasRelatedWork W2166433032 @default.
- W2095481105 hasRelatedWork W2377329191 @default.
- W2095481105 hasRelatedWork W2427429530 @default.