Matches in SemOpenAlex for { <https://semopenalex.org/work/W2095483652> ?p ?o ?g. }
- W2095483652 endingPage "174" @default.
- W2095483652 startingPage "167" @default.
- W2095483652 abstract "Human saliva is rich in proteins, which have been used for disease detection such as oral diseases and systematic diseases. In this paper, we present a computational method for predicting secretory proteins in human saliva based on two sets of human proteins from published literatures and public databases. One set contains known proteins which can be secreted into saliva, and the other contains the proteins that are deemed to be not extracellular secretion. The protein features with discerning power between two sets were firstly gathered. Then a classifier was trained based on the identified features to predict whether a protein was saliva-secretory one or not. The average values of the sensitivity, specificity, precision, accuracy, and Matthews correlation coefficient value by 10-fold cross validation repeated 100 times were 80.67%, 90.56%, 90.09%, 85.53%, and 0.7168, respectively. These results indicated that our selected features are informative. We applied the classifier for prediction saliva-secretory proteins out of all human proteins, if a known biomarker was likely to enter into saliva, and the potential salivary biomarkers for head and neck squamous cell carcinoma. We also compared the top 1000 proteins predicted by computational methods in different kind of fluids. This work provided a useful tool for effectively identifying the salivary biomarkers for various human diseases and facilitate the development of salivary diagnosis." @default.
- W2095483652 created "2016-06-24" @default.
- W2095483652 creator A5003642180 @default.
- W2095483652 creator A5015943195 @default.
- W2095483652 creator A5057290993 @default.
- W2095483652 creator A5059007070 @default.
- W2095483652 creator A5059747977 @default.
- W2095483652 creator A5070778969 @default.
- W2095483652 creator A5076136205 @default.
- W2095483652 date "2015-03-01" @default.
- W2095483652 modified "2023-10-17" @default.
- W2095483652 title "A Computational Method for Prediction of Saliva-Secretory Proteins and Its Application to Identification of Head and Neck Cancer Biomarkers for Salivary Diagnosis" @default.
- W2095483652 cites W1964074906 @default.
- W2095483652 cites W1967627494 @default.
- W2095483652 cites W1973659432 @default.
- W2095483652 cites W1987208959 @default.
- W2095483652 cites W1989310710 @default.
- W2095483652 cites W1991062120 @default.
- W2095483652 cites W2007987034 @default.
- W2095483652 cites W2027872382 @default.
- W2095483652 cites W2029163288 @default.
- W2095483652 cites W2040034810 @default.
- W2095483652 cites W2042351271 @default.
- W2095483652 cites W2047757567 @default.
- W2095483652 cites W2048500195 @default.
- W2095483652 cites W2065755128 @default.
- W2095483652 cites W2067204134 @default.
- W2095483652 cites W2072542124 @default.
- W2095483652 cites W2073072876 @default.
- W2095483652 cites W2084107384 @default.
- W2095483652 cites W2086986126 @default.
- W2095483652 cites W2089417302 @default.
- W2095483652 cites W2108819945 @default.
- W2095483652 cites W2114223799 @default.
- W2095483652 cites W2114759909 @default.
- W2095483652 cites W2118217143 @default.
- W2095483652 cites W2123545939 @default.
- W2095483652 cites W2130253098 @default.
- W2095483652 cites W2137041247 @default.
- W2095483652 cites W2143426320 @default.
- W2095483652 cites W2146066097 @default.
- W2095483652 cites W2147526198 @default.
- W2095483652 cites W2157726390 @default.
- W2095483652 cites W2158485828 @default.
- W2095483652 cites W34951220 @default.
- W2095483652 cites W4294107304 @default.
- W2095483652 doi "https://doi.org/10.1109/tnb.2015.2395143" @default.
- W2095483652 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25675464" @default.
- W2095483652 hasPublicationYear "2015" @default.
- W2095483652 type Work @default.
- W2095483652 sameAs 2095483652 @default.
- W2095483652 citedByCount "20" @default.
- W2095483652 countsByYear W20954836522015 @default.
- W2095483652 countsByYear W20954836522017 @default.
- W2095483652 countsByYear W20954836522018 @default.
- W2095483652 countsByYear W20954836522019 @default.
- W2095483652 countsByYear W20954836522020 @default.
- W2095483652 countsByYear W20954836522021 @default.
- W2095483652 countsByYear W20954836522022 @default.
- W2095483652 countsByYear W20954836522023 @default.
- W2095483652 crossrefType "journal-article" @default.
- W2095483652 hasAuthorship W2095483652A5003642180 @default.
- W2095483652 hasAuthorship W2095483652A5015943195 @default.
- W2095483652 hasAuthorship W2095483652A5057290993 @default.
- W2095483652 hasAuthorship W2095483652A5059007070 @default.
- W2095483652 hasAuthorship W2095483652A5059747977 @default.
- W2095483652 hasAuthorship W2095483652A5070778969 @default.
- W2095483652 hasAuthorship W2095483652A5076136205 @default.
- W2095483652 hasConcept C121608353 @default.
- W2095483652 hasConcept C141071460 @default.
- W2095483652 hasConcept C154945302 @default.
- W2095483652 hasConcept C156399914 @default.
- W2095483652 hasConcept C2776530083 @default.
- W2095483652 hasConcept C2776833033 @default.
- W2095483652 hasConcept C2778937882 @default.
- W2095483652 hasConcept C2781197716 @default.
- W2095483652 hasConcept C3018411727 @default.
- W2095483652 hasConcept C41008148 @default.
- W2095483652 hasConcept C49039625 @default.
- W2095483652 hasConcept C504460877 @default.
- W2095483652 hasConcept C54355233 @default.
- W2095483652 hasConcept C55493867 @default.
- W2095483652 hasConcept C60644358 @default.
- W2095483652 hasConcept C70721500 @default.
- W2095483652 hasConcept C71924100 @default.
- W2095483652 hasConcept C86803240 @default.
- W2095483652 hasConcept C95623464 @default.
- W2095483652 hasConceptScore W2095483652C121608353 @default.
- W2095483652 hasConceptScore W2095483652C141071460 @default.
- W2095483652 hasConceptScore W2095483652C154945302 @default.
- W2095483652 hasConceptScore W2095483652C156399914 @default.
- W2095483652 hasConceptScore W2095483652C2776530083 @default.
- W2095483652 hasConceptScore W2095483652C2776833033 @default.
- W2095483652 hasConceptScore W2095483652C2778937882 @default.
- W2095483652 hasConceptScore W2095483652C2781197716 @default.
- W2095483652 hasConceptScore W2095483652C3018411727 @default.
- W2095483652 hasConceptScore W2095483652C41008148 @default.
- W2095483652 hasConceptScore W2095483652C49039625 @default.