Matches in SemOpenAlex for { <https://semopenalex.org/work/W2095486941> ?p ?o ?g. }
- W2095486941 endingPage "244" @default.
- W2095486941 startingPage "232" @default.
- W2095486941 abstract "Speleothem proxy data provide important information in continental palaeo-climate research due to their precise chronology and wide geographic distribution. Despite a continuously growing number of field and numerical studies designed to study stable isotope fractionation effects, many aspects remain a matter of debate. Here, carbon and oxygen isotope ratios from cave drip water and calcite precipitates sampled on watch glasses in the Bunker Cave (Western Germany) are compared with the values expected for isotopic equilibrium. Furthermore, the field data are compared with the results of a numerical model simulating stalagmite growth and stable isotope ratios. Two drip sites with different drip rates were investigated. Drip site TS 1 is characterised by a high drip rate, and drip water of this site is characterised by a high saturation index with respect to calcite. TS 1 shows no evidence of prior calcite precipitation. Conversely, drip site TS 8 shows a low drip rate, and drip water from this site is characterised by a low saturation index. TS 8 shows evidence of prior calcite precipitation. Whereas the mean δ13CDIC values of the drip water are significantly different between the two drip sites, the mean δ18Odrip water values are similar. Calcite precipitation rates are higher at watch glass site U I corresponding to drip site TS 1. This is probably due to the higher SIcalcite and drip rate. The δ18O and δ13C values of the calcite precipitated on watch glasses U IV corresponding to drip site TS 8 are significantly higher than those of the calcite collected on watch glasses U I. Calcite precipitation occurs close to isotopic equilibrium at watch glass site U I, whereas the calcite precipitated at watch glass site U IV shows clear evidence of isotopic disequilibrium. The results suggest that cave calcites precipitated at lower drip rates have higher δ13C and δ18O values than predicted by equilibrium precipitation. Furthermore, our data show that stalagmites from the same cave, which are fed by drip water with similar δ18O values, may have different δ18Ocalcite values. The δ13C and δ18O values predicted by the numerical model are generally lower by 1.9‰ and 0.8‰, respectively, than those of the natural cave calcite. Nevertheless, the first-order trends observed in the cave data are well reproduced by the model. The offset between cave and model data is probably due to the fractionation factors used in the model." @default.
- W2095486941 created "2016-06-24" @default.
- W2095486941 creator A5015889339 @default.
- W2095486941 creator A5037041743 @default.
- W2095486941 creator A5039100639 @default.
- W2095486941 creator A5041829729 @default.
- W2095486941 creator A5043040391 @default.
- W2095486941 creator A5049547399 @default.
- W2095486941 creator A5050623638 @default.
- W2095486941 creator A5063311508 @default.
- W2095486941 creator A5068531678 @default.
- W2095486941 date "2013-02-01" @default.
- W2095486941 modified "2023-10-06" @default.
- W2095486941 title "Disequilibrium carbon and oxygen isotope fractionation in recent cave calcite: Comparison of cave precipitates and model data" @default.
- W2095486941 cites W1547907389 @default.
- W2095486941 cites W1607421372 @default.
- W2095486941 cites W1964892287 @default.
- W2095486941 cites W1966432906 @default.
- W2095486941 cites W1970658925 @default.
- W2095486941 cites W1973906747 @default.
- W2095486941 cites W1976212583 @default.
- W2095486941 cites W1979516801 @default.
- W2095486941 cites W1983086850 @default.
- W2095486941 cites W1994389996 @default.
- W2095486941 cites W1995095045 @default.
- W2095486941 cites W1998572667 @default.
- W2095486941 cites W2011751579 @default.
- W2095486941 cites W2014796857 @default.
- W2095486941 cites W2017913935 @default.
- W2095486941 cites W2018816677 @default.
- W2095486941 cites W2024428969 @default.
- W2095486941 cites W2026222505 @default.
- W2095486941 cites W2027385173 @default.
- W2095486941 cites W2044135523 @default.
- W2095486941 cites W2045019212 @default.
- W2095486941 cites W2045288160 @default.
- W2095486941 cites W2056856617 @default.
- W2095486941 cites W2060341446 @default.
- W2095486941 cites W2063009391 @default.
- W2095486941 cites W2068193193 @default.
- W2095486941 cites W2070022169 @default.
- W2095486941 cites W2077851391 @default.
- W2095486941 cites W2078383969 @default.
- W2095486941 cites W2079235988 @default.
- W2095486941 cites W2080680312 @default.
- W2095486941 cites W2083262760 @default.
- W2095486941 cites W2089261832 @default.
- W2095486941 cites W2092868494 @default.
- W2095486941 cites W2093426636 @default.
- W2095486941 cites W2098296498 @default.
- W2095486941 cites W2103606259 @default.
- W2095486941 cites W2104768705 @default.
- W2095486941 cites W2112247035 @default.
- W2095486941 cites W2114267852 @default.
- W2095486941 cites W2118642915 @default.
- W2095486941 cites W2130634444 @default.
- W2095486941 cites W2130935566 @default.
- W2095486941 cites W2132772276 @default.
- W2095486941 cites W2139404099 @default.
- W2095486941 cites W2142452714 @default.
- W2095486941 cites W2146543851 @default.
- W2095486941 cites W2151103985 @default.
- W2095486941 cites W2157526888 @default.
- W2095486941 cites W2164089320 @default.
- W2095486941 cites W2165072842 @default.
- W2095486941 cites W2168139166 @default.
- W2095486941 cites W2168761377 @default.
- W2095486941 cites W2172293448 @default.
- W2095486941 doi "https://doi.org/10.1016/j.gca.2012.11.002" @default.
- W2095486941 hasPublicationYear "2013" @default.
- W2095486941 type Work @default.
- W2095486941 sameAs 2095486941 @default.
- W2095486941 citedByCount "74" @default.
- W2095486941 countsByYear W20954869412012 @default.
- W2095486941 countsByYear W20954869412013 @default.
- W2095486941 countsByYear W20954869412014 @default.
- W2095486941 countsByYear W20954869412015 @default.
- W2095486941 countsByYear W20954869412016 @default.
- W2095486941 countsByYear W20954869412017 @default.
- W2095486941 countsByYear W20954869412018 @default.
- W2095486941 countsByYear W20954869412019 @default.
- W2095486941 countsByYear W20954869412020 @default.
- W2095486941 countsByYear W20954869412021 @default.
- W2095486941 countsByYear W20954869412022 @default.
- W2095486941 countsByYear W20954869412023 @default.
- W2095486941 crossrefType "journal-article" @default.
- W2095486941 hasAuthorship W2095486941A5015889339 @default.
- W2095486941 hasAuthorship W2095486941A5037041743 @default.
- W2095486941 hasAuthorship W2095486941A5039100639 @default.
- W2095486941 hasAuthorship W2095486941A5041829729 @default.
- W2095486941 hasAuthorship W2095486941A5043040391 @default.
- W2095486941 hasAuthorship W2095486941A5049547399 @default.
- W2095486941 hasAuthorship W2095486941A5050623638 @default.
- W2095486941 hasAuthorship W2095486941A5063311508 @default.
- W2095486941 hasAuthorship W2095486941A5068531678 @default.
- W2095486941 hasConcept C107872376 @default.
- W2095486941 hasConcept C121332964 @default.
- W2095486941 hasConcept C127313418 @default.