Matches in SemOpenAlex for { <https://semopenalex.org/work/W2095502940> ?p ?o ?g. }
- W2095502940 endingPage "99" @default.
- W2095502940 startingPage "85" @default.
- W2095502940 abstract "The possibility that the upper mantle at depths less than 670 km is chemically as well as mineralogically layered has been extensively discussed. One idea posits that sublithospheric upper mantle (d < 400 km) is dominantly harzburgitic and of low intrinsic density compared with majoritic and clinopyroxene-rich piclogite which occupies the seismic transition region at depths between 400–670 km. The gravitational stability of the ‘harzburgite over piclogite’ arrangement (light above heavy) when heated from below is investigated here in order to better understand the dynamics of mixing. The calculations neglect the effects of plates, compressibility, viscous dissipation, phase change and radiogenic heating and focus on the role played by Δρρ0, the intrinsic density difference between the layers during mixing at fixed Rayleigh number. The dimensionless parameters of this problem include the thermal Rayleigh number based on the heat flux q0 into the basal piclogitic layers (Rq = α gq0d4k κν), the ratio of chemical to thermal buoyancy Rρ = (Δρρ0)kαq0d, and the thickness ratio of the two layers Δ. Here α, g, d, κ, k, ν, Δρ, ρ0 represent the expansitivity, gravity, total depth, thermal diffusivity, thermal conductivity, kinematic viscosity, isothermal difference in density between the two layers (i.e. the intrinsic density difference) and density of the piclogitic bottom layer, respectively. A constant-viscosity Newtonian rheology is assumed for the sublithospheric upper mantle between 100–670 km. Three measures of the extent and thoroughness of mixing are used to quantify mixing; these include the variance of the compositional field, the two-point spatial correlation function for composition and the average composition within each layer. The spatial correlation enables one to define a dominant length scale characteristic of the size of the chemical anomalies (L∗). The adimensional variance, sometimes called the mixing intensity, may be used to define a mixing time. Simulations at fixed Rq but with Δρρ0 = 0, 2, 4, 8% have been carried out for periods of time equivalent to the age of the Earth. The critical Rρ that separates well-mixed states from poorly mixed ones is Rρ ≈ 15 for Rq = 2 × 105. For nominal upper-mantle parameters this implies a critical intrinsic density difference Δρρ0 ≈ 3%. The style of mixing is grossly different depending on whether Δρρ0 is less than, or greater than, the critical value. Plume penetration with rapid changes in the average size of chemical heterogeneities is the dominant mechanism at low Δρρ0 whereas for high Δρρ0 viscous entrainment and the stretching of tendrils along the layer interface is the dominant mixing style. For density ratios near the critical value, the fraction of fertile (easily fused) peridotite within the dominantly harzburgitic upper mantle above the top of the transition region varies quasiperiodically with period ≈ 0.6 Ga, roughly equal to the supercontinent cycle time. Intermittent periods of increased lower-layer transport across the top of the transition zone may correlate with spikes in the volumetric rate of magma generation due to decompression melting of ascending fertile peridotite." @default.
- W2095502940 created "2016-06-24" @default.
- W2095502940 creator A5011752917 @default.
- W2095502940 creator A5082113063 @default.
- W2095502940 date "1992-04-01" @default.
- W2095502940 modified "2023-09-25" @default.
- W2095502940 title "Stability of a chemically layered upper mantle" @default.
- W2095502940 cites W1606953760 @default.
- W2095502940 cites W1967598321 @default.
- W2095502940 cites W1968430874 @default.
- W2095502940 cites W1968923538 @default.
- W2095502940 cites W1975009412 @default.
- W2095502940 cites W1975465691 @default.
- W2095502940 cites W1976754728 @default.
- W2095502940 cites W1979719134 @default.
- W2095502940 cites W1981101560 @default.
- W2095502940 cites W1981246232 @default.
- W2095502940 cites W1983864218 @default.
- W2095502940 cites W1985130423 @default.
- W2095502940 cites W1987706011 @default.
- W2095502940 cites W1993879168 @default.
- W2095502940 cites W1996852596 @default.
- W2095502940 cites W1999394599 @default.
- W2095502940 cites W2001780579 @default.
- W2095502940 cites W2003923154 @default.
- W2095502940 cites W2009659415 @default.
- W2095502940 cites W2012399532 @default.
- W2095502940 cites W2021083861 @default.
- W2095502940 cites W2024677975 @default.
- W2095502940 cites W2029404697 @default.
- W2095502940 cites W2040110163 @default.
- W2095502940 cites W2044870215 @default.
- W2095502940 cites W2044972316 @default.
- W2095502940 cites W2045194480 @default.
- W2095502940 cites W2046051529 @default.
- W2095502940 cites W2052474296 @default.
- W2095502940 cites W2067123129 @default.
- W2095502940 cites W2070779626 @default.
- W2095502940 cites W2083828239 @default.
- W2095502940 cites W2094564862 @default.
- W2095502940 cites W2097006517 @default.
- W2095502940 cites W2103794353 @default.
- W2095502940 cites W2126232463 @default.
- W2095502940 cites W2132795883 @default.
- W2095502940 cites W2155373015 @default.
- W2095502940 cites W2156223712 @default.
- W2095502940 cites W2157105140 @default.
- W2095502940 cites W2164877834 @default.
- W2095502940 cites W4211218562 @default.
- W2095502940 cites W4232405066 @default.
- W2095502940 cites W4245638129 @default.
- W2095502940 cites W4383311275 @default.
- W2095502940 doi "https://doi.org/10.1016/0031-9201(92)90031-p" @default.
- W2095502940 hasPublicationYear "1992" @default.
- W2095502940 type Work @default.
- W2095502940 sameAs 2095502940 @default.
- W2095502940 citedByCount "7" @default.
- W2095502940 countsByYear W20955029402016 @default.
- W2095502940 countsByYear W20955029402020 @default.
- W2095502940 countsByYear W20955029402021 @default.
- W2095502940 crossrefType "journal-article" @default.
- W2095502940 hasAuthorship W2095502940A5011752917 @default.
- W2095502940 hasAuthorship W2095502940A5082113063 @default.
- W2095502940 hasConcept C106836276 @default.
- W2095502940 hasConcept C10899652 @default.
- W2095502940 hasConcept C121332964 @default.
- W2095502940 hasConcept C127313418 @default.
- W2095502940 hasConcept C37668627 @default.
- W2095502940 hasConcept C538625479 @default.
- W2095502940 hasConcept C54791560 @default.
- W2095502940 hasConcept C67236022 @default.
- W2095502940 hasConcept C8058405 @default.
- W2095502940 hasConcept C97355855 @default.
- W2095502940 hasConceptScore W2095502940C106836276 @default.
- W2095502940 hasConceptScore W2095502940C10899652 @default.
- W2095502940 hasConceptScore W2095502940C121332964 @default.
- W2095502940 hasConceptScore W2095502940C127313418 @default.
- W2095502940 hasConceptScore W2095502940C37668627 @default.
- W2095502940 hasConceptScore W2095502940C538625479 @default.
- W2095502940 hasConceptScore W2095502940C54791560 @default.
- W2095502940 hasConceptScore W2095502940C67236022 @default.
- W2095502940 hasConceptScore W2095502940C8058405 @default.
- W2095502940 hasConceptScore W2095502940C97355855 @default.
- W2095502940 hasIssue "1-2" @default.
- W2095502940 hasLocation W20955029401 @default.
- W2095502940 hasOpenAccess W2095502940 @default.
- W2095502940 hasPrimaryLocation W20955029401 @default.
- W2095502940 hasRelatedWork W1973866145 @default.
- W2095502940 hasRelatedWork W1986885850 @default.
- W2095502940 hasRelatedWork W2045099723 @default.
- W2095502940 hasRelatedWork W2057116439 @default.
- W2095502940 hasRelatedWork W2067151194 @default.
- W2095502940 hasRelatedWork W2071736578 @default.
- W2095502940 hasRelatedWork W2157773700 @default.
- W2095502940 hasRelatedWork W2969441586 @default.
- W2095502940 hasRelatedWork W3122634839 @default.
- W2095502940 hasRelatedWork W3146277218 @default.
- W2095502940 hasVolume "71" @default.