Matches in SemOpenAlex for { <https://semopenalex.org/work/W2095604857> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W2095604857 abstract "A successful maintenance program incorporates planning and follow-up processes, including systematic feedback and data collection systems and routines. The aim of our study is to find methods for predicting the number of failures and the time to the next failure using expert data, which is updated with the collected event data. In this study, three methods for predicting the number of failures were compared. The event and expert data was collected from a Finnish board mill. Tested predicted methods included the moving average, and models for the Poisson process and power law process. With our data set, moving average delivered as good estimates as the more sophisticated ones. One of the four test cases showed especially large variations in the recorded yearly failure rate and none of the testing predicting methods delivered reliable estimates in this case. Because maintenance actions are carried out also during other stoppages, the event data proved to be insufficient for time to failure predictions. The results proved that a continuously improving maintenance program should be based, not only on the event data, but also on all other relevant information. This means than data from different sources need to be combined and the quality of the recorded data must be high." @default.
- W2095604857 created "2016-06-24" @default.
- W2095604857 creator A5036398574 @default.
- W2095604857 creator A5070282903 @default.
- W2095604857 date "2004-06-10" @default.
- W2095604857 modified "2023-10-14" @default.
- W2095604857 title "Supporting maintenance decisions with expert and event data" @default.
- W2095604857 cites W2081363542 @default.
- W2095604857 cites W2138949234 @default.
- W2095604857 cites W2152077994 @default.
- W2095604857 doi "https://doi.org/10.1109/rams.2004.1285511" @default.
- W2095604857 hasPublicationYear "2004" @default.
- W2095604857 type Work @default.
- W2095604857 sameAs 2095604857 @default.
- W2095604857 citedByCount "4" @default.
- W2095604857 countsByYear W20956048572014 @default.
- W2095604857 crossrefType "proceedings-article" @default.
- W2095604857 hasAuthorship W2095604857A5036398574 @default.
- W2095604857 hasAuthorship W2095604857A5070282903 @default.
- W2095604857 hasConcept C115903868 @default.
- W2095604857 hasConcept C121332964 @default.
- W2095604857 hasConcept C2522767166 @default.
- W2095604857 hasConcept C2779662365 @default.
- W2095604857 hasConcept C2987896495 @default.
- W2095604857 hasConcept C41008148 @default.
- W2095604857 hasConcept C62520636 @default.
- W2095604857 hasConcept C67186912 @default.
- W2095604857 hasConceptScore W2095604857C115903868 @default.
- W2095604857 hasConceptScore W2095604857C121332964 @default.
- W2095604857 hasConceptScore W2095604857C2522767166 @default.
- W2095604857 hasConceptScore W2095604857C2779662365 @default.
- W2095604857 hasConceptScore W2095604857C2987896495 @default.
- W2095604857 hasConceptScore W2095604857C41008148 @default.
- W2095604857 hasConceptScore W2095604857C62520636 @default.
- W2095604857 hasConceptScore W2095604857C67186912 @default.
- W2095604857 hasLocation W20956048571 @default.
- W2095604857 hasOpenAccess W2095604857 @default.
- W2095604857 hasPrimaryLocation W20956048571 @default.
- W2095604857 hasRelatedWork W1534856812 @default.
- W2095604857 hasRelatedWork W2044865094 @default.
- W2095604857 hasRelatedWork W2077003889 @default.
- W2095604857 hasRelatedWork W2137742540 @default.
- W2095604857 hasRelatedWork W2331871910 @default.
- W2095604857 hasRelatedWork W2366133251 @default.
- W2095604857 hasRelatedWork W2903447413 @default.
- W2095604857 hasRelatedWork W2950856327 @default.
- W2095604857 hasRelatedWork W3209121823 @default.
- W2095604857 hasRelatedWork W4223568468 @default.
- W2095604857 isParatext "false" @default.
- W2095604857 isRetracted "false" @default.
- W2095604857 magId "2095604857" @default.
- W2095604857 workType "article" @default.