Matches in SemOpenAlex for { <https://semopenalex.org/work/W2095681242> ?p ?o ?g. }
- W2095681242 endingPage "2464" @default.
- W2095681242 startingPage "2441" @default.
- W2095681242 abstract "In subduction zones, melting and dehydration of the subducted slab introduce material into the mantle wedge and modify its chemical and isotopic composition. As a consequence, island arc lavas differ significantly from mid-ocean ridge basalts and ocean island basalts. In some arcs, the composition of lavas is strongly influenced by the sedimentary material introduced with the slab; in others, magma composition is mainly affected by aqueous fluids released by the slab. The Lesser Antilles arc is known for its extreme continental-crust-like signature but for some Lesser Antilles lavas subducted sediments are barely involved and enrichment in fluid-mobile elements (Ba, U, Sr, Pb, etc.) is the dominant feature. Here we evaluate whether La/Sm is a quantitative proxy of sediment involvement in volcanic arcs, and we relate dehydration and melting processes to the temperature and pressure conditions of the slab. We use Martinique as a case study because in this island both dehydration and sediment melting fingerprints coexist. We measured major and trace elements for about 130 age-constrained samples, carefully chosen to cover all volcanic phases of Martinique (25 Ma to present). Using these results we demonstrate that: (1) weathering does not modify the La/Sm ratio; (2) fractional crystallization of amphibole and/or garnet does not increase La/Sm by more than 20%; (3) rare earth element transfer from wall-rock to magma during fractionation is not significant; (4) melting of the mantle source increases La/Sm by only about 20%. As a consequence, we show that the proportion of slab sediment incorporated in the mantle wedge controls the La/Sm ratio of the source. The observed correlations between La/Sm and Nd and Hf isotopic compositions indicate that the effect of sediment addition is the overwhelming factor: La/Sm is a good proxy for slab sediment proportion in Martinique. We observe a geographical gradient between slab dehydration and sediment melting on the island. Whereas lavas located on the western side of the island display a clear sedimentary input in their source, lavas located on the eastern side of the island, closer to the trench, are clearly influenced by dehydration of the subducted slab. In addition, the aqueous fluids clearly come from the subducted basalt and they did not interact with the overlying sediments. The influence of sediment added to the source of the magmas increases from the eastern part to the western part of the island. We relate this geographical change to the pressure and temperature conditions at the slab surface. Sediments probably cross their solidus under Martinique and hydrous melting is triggered. Finally, we show that under all volcanic arcs where the signature of sediments overwhelms the signature of fluids, the slab surface reaches P–T conditions that allow the subducted sediments to melt. Inversely, under most volcanic arcs where the signal of aqueous fluids dominates over sediment melts, the subducted slab is not hot enough for the sedimentary pile to melt." @default.
- W2095681242 created "2016-06-24" @default.
- W2095681242 creator A5044481266 @default.
- W2095681242 creator A5078255393 @default.
- W2095681242 creator A5083858632 @default.
- W2095681242 creator A5091664857 @default.
- W2095681242 date "2012-09-08" @default.
- W2095681242 modified "2023-10-04" @default.
- W2095681242 title "Martinique: a Clear Case for Sediment Melting and Slab Dehydration as a Function of Distance to the Trench" @default.
- W2095681242 cites W1490894345 @default.
- W2095681242 cites W1534749586 @default.
- W2095681242 cites W1566514932 @default.
- W2095681242 cites W1601752670 @default.
- W2095681242 cites W1636995053 @default.
- W2095681242 cites W1965940748 @default.
- W2095681242 cites W1969372192 @default.
- W2095681242 cites W1969859799 @default.
- W2095681242 cites W1975163214 @default.
- W2095681242 cites W1976788350 @default.
- W2095681242 cites W1977039791 @default.
- W2095681242 cites W1982560803 @default.
- W2095681242 cites W1983028745 @default.
- W2095681242 cites W1987907556 @default.
- W2095681242 cites W1989475913 @default.
- W2095681242 cites W1990479851 @default.
- W2095681242 cites W1990737863 @default.
- W2095681242 cites W1991156767 @default.
- W2095681242 cites W1994748013 @default.
- W2095681242 cites W1995564745 @default.
- W2095681242 cites W1998707404 @default.
- W2095681242 cites W1999418282 @default.
- W2095681242 cites W2005160325 @default.
- W2095681242 cites W2006421604 @default.
- W2095681242 cites W2007708221 @default.
- W2095681242 cites W2008804858 @default.
- W2095681242 cites W2009930154 @default.
- W2095681242 cites W2010280096 @default.
- W2095681242 cites W2010809235 @default.
- W2095681242 cites W2011826572 @default.
- W2095681242 cites W2012610347 @default.
- W2095681242 cites W2014832120 @default.
- W2095681242 cites W2016018692 @default.
- W2095681242 cites W2018381115 @default.
- W2095681242 cites W2022696550 @default.
- W2095681242 cites W2022980819 @default.
- W2095681242 cites W2024496784 @default.
- W2095681242 cites W2024814277 @default.
- W2095681242 cites W2026889131 @default.
- W2095681242 cites W2027862110 @default.
- W2095681242 cites W2031894158 @default.
- W2095681242 cites W2034229612 @default.
- W2095681242 cites W2037232404 @default.
- W2095681242 cites W2037771137 @default.
- W2095681242 cites W2038074668 @default.
- W2095681242 cites W2038406687 @default.
- W2095681242 cites W2041507297 @default.
- W2095681242 cites W2041731524 @default.
- W2095681242 cites W2051691003 @default.
- W2095681242 cites W2051790411 @default.
- W2095681242 cites W2059649426 @default.
- W2095681242 cites W2060655431 @default.
- W2095681242 cites W2075199408 @default.
- W2095681242 cites W2075863333 @default.
- W2095681242 cites W2079452226 @default.
- W2095681242 cites W2080280169 @default.
- W2095681242 cites W2080843712 @default.
- W2095681242 cites W2086066628 @default.
- W2095681242 cites W2086755132 @default.
- W2095681242 cites W2086820683 @default.
- W2095681242 cites W2089274515 @default.
- W2095681242 cites W2093692135 @default.
- W2095681242 cites W2094208637 @default.
- W2095681242 cites W2095519914 @default.
- W2095681242 cites W2097016577 @default.
- W2095681242 cites W2105269167 @default.
- W2095681242 cites W2108597026 @default.
- W2095681242 cites W2112737386 @default.
- W2095681242 cites W2117217018 @default.
- W2095681242 cites W2119727714 @default.
- W2095681242 cites W2122161746 @default.
- W2095681242 cites W2128689328 @default.
- W2095681242 cites W2140627093 @default.
- W2095681242 cites W2145898590 @default.
- W2095681242 cites W2146117929 @default.
- W2095681242 cites W2148639117 @default.
- W2095681242 cites W2152250823 @default.
- W2095681242 cites W2152669884 @default.
- W2095681242 cites W2157193003 @default.
- W2095681242 cites W2160361224 @default.
- W2095681242 cites W2161272355 @default.
- W2095681242 cites W2316213342 @default.
- W2095681242 doi "https://doi.org/10.1093/petrology/egs055" @default.
- W2095681242 hasPublicationYear "2012" @default.
- W2095681242 type Work @default.
- W2095681242 sameAs 2095681242 @default.
- W2095681242 citedByCount "166" @default.
- W2095681242 countsByYear W20956812422013 @default.
- W2095681242 countsByYear W20956812422014 @default.