Matches in SemOpenAlex for { <https://semopenalex.org/work/W2095725645> ?p ?o ?g. }
- W2095725645 endingPage "39" @default.
- W2095725645 startingPage "39" @default.
- W2095725645 abstract "Mathematical morphology is a powerful tool for image analysis; however, classical morphological operators suffer from lacks of robustness against noise, and also intrinsic image features are not accounted at all in the process. We propose in this work a new and different way to overcome such limits, by introducing both robustness and locally adaptability in morphological operators, which are now defined in a manner such that intrinsic image features are accounted. Dealing with partial differential equations (PDEs) for generalized Cauchy problems, we show that proposed PDEs are equivalent to impose robustness and adaptability of corresponding sup-inf operators, to structuring functions. Accurate numerical schemes are also provided to solve proposed PDEs, and experiments conducted for both synthetic and real images, show the efficiency and robustness of our approach." @default.
- W2095725645 created "2016-06-24" @default.
- W2095725645 creator A5045772729 @default.
- W2095725645 creator A5067475182 @default.
- W2095725645 date "2014-07-08" @default.
- W2095725645 modified "2023-10-17" @default.
- W2095725645 title "MULTISCALE IMAGE ANALYSIS BASED ON ROBUST AND ADAPTIVE MORPHOLOGICAL SCALE-SPACES" @default.
- W2095725645 cites W1216975658 @default.
- W2095725645 cites W1485191659 @default.
- W2095725645 cites W1508335110 @default.
- W2095725645 cites W1512033159 @default.
- W2095725645 cites W1516239879 @default.
- W2095725645 cites W1532111732 @default.
- W2095725645 cites W1542888268 @default.
- W2095725645 cites W155987919 @default.
- W2095725645 cites W1570514300 @default.
- W2095725645 cites W1572805076 @default.
- W2095725645 cites W1590218343 @default.
- W2095725645 cites W1963679837 @default.
- W2095725645 cites W1966083290 @default.
- W2095725645 cites W1966984322 @default.
- W2095725645 cites W1967110495 @default.
- W2095725645 cites W1975381246 @default.
- W2095725645 cites W1989409369 @default.
- W2095725645 cites W1990148783 @default.
- W2095725645 cites W1990244934 @default.
- W2095725645 cites W1991113069 @default.
- W2095725645 cites W1997998401 @default.
- W2095725645 cites W2012872284 @default.
- W2095725645 cites W2014823423 @default.
- W2095725645 cites W2017837798 @default.
- W2095725645 cites W2029036188 @default.
- W2095725645 cites W2032316144 @default.
- W2095725645 cites W2041964811 @default.
- W2095725645 cites W2048733914 @default.
- W2095725645 cites W2049740218 @default.
- W2095725645 cites W2049844083 @default.
- W2095725645 cites W2051842524 @default.
- W2095725645 cites W2058374493 @default.
- W2095725645 cites W2063703787 @default.
- W2095725645 cites W2065164181 @default.
- W2095725645 cites W2095490164 @default.
- W2095725645 cites W2103049372 @default.
- W2095725645 cites W2119817002 @default.
- W2095725645 cites W2130094488 @default.
- W2095725645 cites W2132934990 @default.
- W2095725645 cites W2145180908 @default.
- W2095725645 cites W2146052399 @default.
- W2095725645 cites W2149396808 @default.
- W2095725645 cites W2150134853 @default.
- W2095725645 cites W2152229373 @default.
- W2095725645 cites W2153419872 @default.
- W2095725645 cites W2160935107 @default.
- W2095725645 cites W2164741953 @default.
- W2095725645 cites W2168753966 @default.
- W2095725645 cites W2169579934 @default.
- W2095725645 cites W2170949105 @default.
- W2095725645 cites W23259235 @default.
- W2095725645 cites W2501779537 @default.
- W2095725645 cites W2505399031 @default.
- W2095725645 cites W2521463608 @default.
- W2095725645 cites W2798501834 @default.
- W2095725645 cites W2913706141 @default.
- W2095725645 cites W96629785 @default.
- W2095725645 cites W2797204481 @default.
- W2095725645 cites W3022910760 @default.
- W2095725645 doi "https://doi.org/10.5566/ias.993" @default.
- W2095725645 hasPublicationYear "2014" @default.
- W2095725645 type Work @default.
- W2095725645 sameAs 2095725645 @default.
- W2095725645 citedByCount "6" @default.
- W2095725645 countsByYear W20957256452015 @default.
- W2095725645 countsByYear W20957256452016 @default.
- W2095725645 countsByYear W20957256452018 @default.
- W2095725645 countsByYear W20957256452020 @default.
- W2095725645 countsByYear W20957256452022 @default.
- W2095725645 crossrefType "journal-article" @default.
- W2095725645 hasAuthorship W2095725645A5045772729 @default.
- W2095725645 hasAuthorship W2095725645A5067475182 @default.
- W2095725645 hasBestOaLocation W20957256451 @default.
- W2095725645 hasConcept C104317684 @default.
- W2095725645 hasConcept C11413529 @default.
- W2095725645 hasConcept C115961682 @default.
- W2095725645 hasConcept C126255220 @default.
- W2095725645 hasConcept C134306372 @default.
- W2095725645 hasConcept C154945302 @default.
- W2095725645 hasConcept C177606310 @default.
- W2095725645 hasConcept C185568154 @default.
- W2095725645 hasConcept C185592680 @default.
- W2095725645 hasConcept C18903297 @default.
- W2095725645 hasConcept C28826006 @default.
- W2095725645 hasConcept C2983327147 @default.
- W2095725645 hasConcept C33923547 @default.
- W2095725645 hasConcept C41008148 @default.
- W2095725645 hasConcept C49344536 @default.
- W2095725645 hasConcept C55493867 @default.
- W2095725645 hasConcept C63479239 @default.
- W2095725645 hasConcept C86803240 @default.