Matches in SemOpenAlex for { <https://semopenalex.org/work/W2095812393> ?p ?o ?g. }
- W2095812393 endingPage "482" @default.
- W2095812393 startingPage "474" @default.
- W2095812393 abstract "•In vitro microenvironment modulators offer some control over tenogenic phenotype maintenance and over tenogenic differentiation of stem cells. •Standardised readout systems should be established to assess effective tenogenic phenotype maintenance and tenogenic differentiation of stem cells. Tendon injuries constitute an unmet clinical need, with 3 to 5 million new incidents occurring annually worldwide. Tissue grafting and biomaterial-based approaches fail to provide environments that are conducive to regeneration; instead they lead to nonspecific cell adhesion and scar tissue formation, which collectively impair functionality. Cell based therapies may potentially recover native tendon function, if tenocyte trans-differentiation can be evaded and stem cell differentiation towards tenogenic lineage is attained. To this end, recreating an artificial in vivo tendon niche by engineering functional in vitro microenvironments is a research priority. Clinically relevant cell based therapies for tendon repair and regeneration could be created using tools that harness biophysical beacons (surface topography, mechanical loading), biochemical cues (oxygen tension), and biological signals (growth factors). Tendon injuries constitute an unmet clinical need, with 3 to 5 million new incidents occurring annually worldwide. Tissue grafting and biomaterial-based approaches fail to provide environments that are conducive to regeneration; instead they lead to nonspecific cell adhesion and scar tissue formation, which collectively impair functionality. Cell based therapies may potentially recover native tendon function, if tenocyte trans-differentiation can be evaded and stem cell differentiation towards tenogenic lineage is attained. To this end, recreating an artificial in vivo tendon niche by engineering functional in vitro microenvironments is a research priority. Clinically relevant cell based therapies for tendon repair and regeneration could be created using tools that harness biophysical beacons (surface topography, mechanical loading), biochemical cues (oxygen tension), and biological signals (growth factors). group of molecules that can be used to identify a specific set of cells; can consist of genes, proteins, enzymes, transcription factors. molecules secreted by a cell. extracellular matrix proteins with a common and unique triple helical structure (Gly-Pro-Hyp)n sequence, responsible for structural integrity of the extracellular matrix of connective tissues; 29 types have been identified so far, with the following types being present in tendon: I, III, V, IX, XII, and XIV. a complex three-dimensional cell-secreted structure that provides support along with biochemical and biological signals to cells and tissues. long and linear polysaccharides composed of repeating disaccharide units. molecules that regulate a variety of cellular functions such as growth, proliferation, and differentiation. significant changes in the phenotype, with significant alterations in morphology, growth behaviour, secretome composition, and gene expression. manipulation of a cell's function by introducing foreign DNA using viral (transduction) or non-viral (transfection) vectors to induce expression of specific proteins or by inducing pluripotency to obtain induced pluripotent stem cells. structures made of natural or synthetic materials that recapitulate the architecture of the physiological environment to induce tissue formation. portion of tissue, autologous, allogeneic, or xenogeneic in nature, used to repair a damaged tissue; for tendon injuries the autograft is currently the gold standard in clinical practice." @default.
- W2095812393 created "2016-06-24" @default.
- W2095812393 creator A5000546524 @default.
- W2095812393 creator A5027018298 @default.
- W2095812393 creator A5052798492 @default.
- W2095812393 creator A5084073026 @default.
- W2095812393 date "2014-09-01" @default.
- W2095812393 modified "2023-09-30" @default.
- W2095812393 title "The biophysical, biochemical, and biological toolbox for tenogenic phenotype maintenance in vitro" @default.
- W2095812393 cites W1494980326 @default.
- W2095812393 cites W1795599578 @default.
- W2095812393 cites W1964042376 @default.
- W2095812393 cites W1964938903 @default.
- W2095812393 cites W1965279455 @default.
- W2095812393 cites W1967542988 @default.
- W2095812393 cites W1969116652 @default.
- W2095812393 cites W1970294584 @default.
- W2095812393 cites W1974211526 @default.
- W2095812393 cites W1974686435 @default.
- W2095812393 cites W1976175169 @default.
- W2095812393 cites W1978494660 @default.
- W2095812393 cites W1979135474 @default.
- W2095812393 cites W1979686262 @default.
- W2095812393 cites W1980788187 @default.
- W2095812393 cites W1982876681 @default.
- W2095812393 cites W1991977814 @default.
- W2095812393 cites W1992245888 @default.
- W2095812393 cites W1994746607 @default.
- W2095812393 cites W1994887621 @default.
- W2095812393 cites W1996158725 @default.
- W2095812393 cites W2000488306 @default.
- W2095812393 cites W2000607593 @default.
- W2095812393 cites W2002757619 @default.
- W2095812393 cites W2003315801 @default.
- W2095812393 cites W2009329190 @default.
- W2095812393 cites W2009823096 @default.
- W2095812393 cites W2009948917 @default.
- W2095812393 cites W2014344419 @default.
- W2095812393 cites W2014603483 @default.
- W2095812393 cites W2017564586 @default.
- W2095812393 cites W2020451860 @default.
- W2095812393 cites W2023136127 @default.
- W2095812393 cites W2024894752 @default.
- W2095812393 cites W2024911623 @default.
- W2095812393 cites W2027282534 @default.
- W2095812393 cites W2029661630 @default.
- W2095812393 cites W2037328562 @default.
- W2095812393 cites W2037744155 @default.
- W2095812393 cites W2038332440 @default.
- W2095812393 cites W2039686579 @default.
- W2095812393 cites W2042767306 @default.
- W2095812393 cites W2044524273 @default.
- W2095812393 cites W2046309513 @default.
- W2095812393 cites W2048962178 @default.
- W2095812393 cites W2051200733 @default.
- W2095812393 cites W2055453684 @default.
- W2095812393 cites W2056974028 @default.
- W2095812393 cites W2058400259 @default.
- W2095812393 cites W2063670121 @default.
- W2095812393 cites W2065256756 @default.
- W2095812393 cites W2067882723 @default.
- W2095812393 cites W2072287141 @default.
- W2095812393 cites W2080505451 @default.
- W2095812393 cites W2080603184 @default.
- W2095812393 cites W2082252073 @default.
- W2095812393 cites W2082366764 @default.
- W2095812393 cites W2084037323 @default.
- W2095812393 cites W2084339314 @default.
- W2095812393 cites W2092504238 @default.
- W2095812393 cites W2093081023 @default.
- W2095812393 cites W2093584750 @default.
- W2095812393 cites W2102760944 @default.
- W2095812393 cites W2103755608 @default.
- W2095812393 cites W2108712781 @default.
- W2095812393 cites W2112102525 @default.
- W2095812393 cites W2112285606 @default.
- W2095812393 cites W2121497708 @default.
- W2095812393 cites W2125068249 @default.
- W2095812393 cites W2127748623 @default.
- W2095812393 cites W2134202417 @default.
- W2095812393 cites W2141508630 @default.
- W2095812393 cites W2146946598 @default.
- W2095812393 cites W2155338282 @default.
- W2095812393 cites W2169157776 @default.
- W2095812393 cites W2218666767 @default.
- W2095812393 cites W4249736061 @default.
- W2095812393 cites W4385619632 @default.
- W2095812393 doi "https://doi.org/10.1016/j.tibtech.2014.06.009" @default.
- W2095812393 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25043371" @default.
- W2095812393 hasPublicationYear "2014" @default.
- W2095812393 type Work @default.
- W2095812393 sameAs 2095812393 @default.
- W2095812393 citedByCount "67" @default.
- W2095812393 countsByYear W20958123932014 @default.
- W2095812393 countsByYear W20958123932015 @default.
- W2095812393 countsByYear W20958123932016 @default.
- W2095812393 countsByYear W20958123932017 @default.
- W2095812393 countsByYear W20958123932018 @default.