Matches in SemOpenAlex for { <https://semopenalex.org/work/W2095847349> ?p ?o ?g. }
- W2095847349 endingPage "324" @default.
- W2095847349 startingPage "306" @default.
- W2095847349 abstract "In this paper a novel approach is proposed to predict intraday directional-movements of a currency-pair in the foreign exchange market based on the text of breaking financial news-headlines. The motivation behind this work is twofold: First, although market-prediction through text-mining is shown to be a promising area of work in the literature, the text-mining approaches utilized in it at this stage are not much beyond basic ones as it is still an emerging field. This work is an effort to put more emphasis on the text-mining methods and tackle some specific aspects thereof that are weak in previous works, namely: the problem of high dimensionality as well as the problem of ignoring sentiment and semantics in dealing with textual language. This research assumes that addressing these aspects of text-mining have an impact on the quality of the achieved results. The proposed system proves this assumption to be right. The second part of the motivation is to research a specific market, namely, the foreign exchange market, which seems not to have been researched in the previous works based on predictive text-mining. Therefore, results of this work also successfully demonstrate a predictive relationship between this specific market-type and the textual data of news. Besides the above two main components of the motivation, there are other specific aspects that make the setup of the proposed system and the conducted experiment unique, for example, the use of news article-headlines only and not news article-bodies, which enables usage of short pieces of text rather than long ones; or the use of general financial breaking news without any further filtration. In order to accomplish the above, this work produces a multi-layer algorithm that tackles each of the mentioned aspects of the text-mining problem at a designated layer. The first layer is termed the Semantic Abstraction Layer and addresses the problem of co-reference in text mining that is contributing to sparsity. Co-reference occurs when two or more words in a text corpus refer to the same concept. This work produces a custom approach by the name of Heuristic-Hypernyms Feature-Selection which creates a way to recognize words with the same parent-word to be regarded as one entity. As a result, prediction accuracy increases significantly at this layer which is attributed to appropriate noise-reduction from the feature-space. The second layer is termed Sentiment Integration Layer, which integrates sentiment analysis capability into the algorithm by proposing a sentiment weight by the name of SumScore that reflects investors’ sentiment. Additionally, this layer reduces the dimensions by eliminating those that are of zero value in terms of sentiment and thereby improves prediction accuracy. The third layer encompasses a dynamic model creation algorithm, termed Synchronous Targeted Feature Reduction (STFR). It is suitable for the challenge at hand whereby the mining of a stream of text is concerned. It updates the models with the most recent information available and, more importantly, it ensures that the dimensions are reduced to the absolute minimum. The algorithm and each of its layers are extensively evaluated using real market data and news content across multiple years and have proven to be solid and superior to any other comparable solution. The proposed techniques implemented in the system, result in significantly high directional-accuracies of up to 83.33%. On top of a well-rounded multifaceted algorithm, this work contributes a much needed research framework for this context with a test-bed of data that must make future research endeavors more convenient. The produced algorithm is scalable and its modular design allows improvement in each of its layers in future research. This paper provides ample details to reproduce the entire system and the conducted experiments." @default.
- W2095847349 created "2016-06-24" @default.
- W2095847349 creator A5004303502 @default.
- W2095847349 creator A5036057749 @default.
- W2095847349 creator A5063698407 @default.
- W2095847349 creator A5082364037 @default.
- W2095847349 date "2015-01-01" @default.
- W2095847349 modified "2023-10-16" @default.
- W2095847349 title "Text mining of news-headlines for FOREX market prediction: A Multi-layer Dimension Reduction Algorithm with semantics and sentiment" @default.
- W2095847349 cites W1964999599 @default.
- W2095847349 cites W1969629226 @default.
- W2095847349 cites W1975428268 @default.
- W2095847349 cites W1979432867 @default.
- W2095847349 cites W1979971681 @default.
- W2095847349 cites W1982082202 @default.
- W2095847349 cites W1982589161 @default.
- W2095847349 cites W1982675331 @default.
- W2095847349 cites W1986657956 @default.
- W2095847349 cites W1986803363 @default.
- W2095847349 cites W1988518729 @default.
- W2095847349 cites W1989660271 @default.
- W2095847349 cites W2002115391 @default.
- W2095847349 cites W2002684377 @default.
- W2095847349 cites W2012079387 @default.
- W2095847349 cites W2013619180 @default.
- W2095847349 cites W2014545475 @default.
- W2095847349 cites W2015174807 @default.
- W2095847349 cites W2022006693 @default.
- W2095847349 cites W2027860007 @default.
- W2095847349 cites W2039796390 @default.
- W2095847349 cites W2041557121 @default.
- W2095847349 cites W2042614763 @default.
- W2095847349 cites W2048658075 @default.
- W2095847349 cites W2048913818 @default.
- W2095847349 cites W2050730017 @default.
- W2095847349 cites W2052589614 @default.
- W2095847349 cites W2054269096 @default.
- W2095847349 cites W2057074619 @default.
- W2095847349 cites W2062398653 @default.
- W2095847349 cites W2064270391 @default.
- W2095847349 cites W2068431618 @default.
- W2095847349 cites W2068451972 @default.
- W2095847349 cites W2073070036 @default.
- W2095847349 cites W2074962177 @default.
- W2095847349 cites W2081580037 @default.
- W2095847349 cites W2082273392 @default.
- W2095847349 cites W2083060785 @default.
- W2095847349 cites W2084220230 @default.
- W2095847349 cites W2089442239 @default.
- W2095847349 cites W2092022777 @default.
- W2095847349 cites W2092577289 @default.
- W2095847349 cites W2094665138 @default.
- W2095847349 cites W2108150588 @default.
- W2095847349 cites W2124098825 @default.
- W2095847349 cites W2128792405 @default.
- W2095847349 cites W2131273899 @default.
- W2095847349 cites W2141148673 @default.
- W2095847349 cites W2147685248 @default.
- W2095847349 cites W2149167588 @default.
- W2095847349 cites W2149312065 @default.
- W2095847349 cites W2149640509 @default.
- W2095847349 cites W2162256707 @default.
- W2095847349 cites W2168681504 @default.
- W2095847349 cites W2171468534 @default.
- W2095847349 cites W3122563224 @default.
- W2095847349 cites W3124529279 @default.
- W2095847349 cites W3125152818 @default.
- W2095847349 cites W4239510810 @default.
- W2095847349 doi "https://doi.org/10.1016/j.eswa.2014.08.004" @default.
- W2095847349 hasPublicationYear "2015" @default.
- W2095847349 type Work @default.
- W2095847349 sameAs 2095847349 @default.
- W2095847349 citedByCount "198" @default.
- W2095847349 countsByYear W20958473492015 @default.
- W2095847349 countsByYear W20958473492016 @default.
- W2095847349 countsByYear W20958473492017 @default.
- W2095847349 countsByYear W20958473492018 @default.
- W2095847349 countsByYear W20958473492019 @default.
- W2095847349 countsByYear W20958473492020 @default.
- W2095847349 countsByYear W20958473492021 @default.
- W2095847349 countsByYear W20958473492022 @default.
- W2095847349 countsByYear W20958473492023 @default.
- W2095847349 crossrefType "journal-article" @default.
- W2095847349 hasAuthorship W2095847349A5004303502 @default.
- W2095847349 hasAuthorship W2095847349A5036057749 @default.
- W2095847349 hasAuthorship W2095847349A5063698407 @default.
- W2095847349 hasAuthorship W2095847349A5082364037 @default.
- W2095847349 hasConcept C119857082 @default.
- W2095847349 hasConcept C124101348 @default.
- W2095847349 hasConcept C138885662 @default.
- W2095847349 hasConcept C141121606 @default.
- W2095847349 hasConcept C154945302 @default.
- W2095847349 hasConcept C184337299 @default.
- W2095847349 hasConcept C199360897 @default.
- W2095847349 hasConcept C202444582 @default.
- W2095847349 hasConcept C2522767166 @default.
- W2095847349 hasConcept C33676613 @default.
- W2095847349 hasConcept C33923547 @default.