Matches in SemOpenAlex for { <https://semopenalex.org/work/W2095869861> ?p ?o ?g. }
- W2095869861 endingPage "617" @default.
- W2095869861 startingPage "591" @default.
- W2095869861 abstract "Negative obstacles for field autonomous land vehicles (ALVs) refer to ditches, pits, or terrain with a negative slope, which will bring risks to vehicles in travel. This paper presents a feature fusion based algorithm (FFA) for negative obstacle detection with LiDAR sensors. The main contributions of this paper are fourfold: (1) A novel three-dimensional (3-D) LiDAR setup is presented. With this setup, the blind area around the vehicle is greatly reduced, and the density of LiDAR data is greatly improved, which are critical for ALVs. (2) On the basis of the proposed setup, a mathematical model of the point distribution of a single scan line is deduced, which is used to generate ideal scan lines. (3) With the mathematical model, an adaptive matching filter based algorithm (AMFA) is presented to implement negative obstacle detection. Features of simulated obstacles in each scan line are employed to detect the real negative obstacles. They are supposed to match with features of the potential real obstacles. (4) Grounded on AMFA algorithm, a feature fusion based algorithm is proposed. FFA algorithm fuses all the features generated by different LiDARs or captured at different frames. Bayesian rule is adopted to estimate the weight of each feature. Experimental results show that the performance of the proposed algorithm is robust and stable. Compared with the state-of-the-art techniques, the detection range is improved by 20%, and the computing time is reduced by an order of two magnitudes. The proposed algorithm had been successfully applied on two ALVs, which won the champion and the runner-up in the “Overcome Danger 2014” ground unmanned vehicle challenge of China." @default.
- W2095869861 created "2016-06-24" @default.
- W2095869861 creator A5008550545 @default.
- W2095869861 creator A5026116973 @default.
- W2095869861 creator A5031680851 @default.
- W2095869861 creator A5034078423 @default.
- W2095869861 creator A5034574139 @default.
- W2095869861 creator A5087577528 @default.
- W2095869861 date "2015-06-11" @default.
- W2095869861 modified "2023-09-26" @default.
- W2095869861 title "LiDAR Based Negative Obstacle Detection for Field Autonomous Land Vehicles" @default.
- W2095869861 cites W1551215724 @default.
- W2095869861 cites W1984266349 @default.
- W2095869861 cites W1984645478 @default.
- W2095869861 cites W2023513943 @default.
- W2095869861 cites W2064243292 @default.
- W2095869861 cites W2069171104 @default.
- W2095869861 cites W2072375829 @default.
- W2095869861 cites W2089652819 @default.
- W2095869861 cites W2116190966 @default.
- W2095869861 cites W2145153951 @default.
- W2095869861 cites W2147598751 @default.
- W2095869861 cites W2150066425 @default.
- W2095869861 cites W2154844948 @default.
- W2095869861 cites W2164958744 @default.
- W2095869861 cites W2406067508 @default.
- W2095869861 cites W2760981468 @default.
- W2095869861 cites W3143108104 @default.
- W2095869861 cites W4229727857 @default.
- W2095869861 cites W4293682399 @default.
- W2095869861 doi "https://doi.org/10.1002/rob.21609" @default.
- W2095869861 hasPublicationYear "2015" @default.
- W2095869861 type Work @default.
- W2095869861 sameAs 2095869861 @default.
- W2095869861 citedByCount "32" @default.
- W2095869861 countsByYear W20958698612016 @default.
- W2095869861 countsByYear W20958698612017 @default.
- W2095869861 countsByYear W20958698612018 @default.
- W2095869861 countsByYear W20958698612019 @default.
- W2095869861 countsByYear W20958698612020 @default.
- W2095869861 countsByYear W20958698612021 @default.
- W2095869861 countsByYear W20958698612022 @default.
- W2095869861 countsByYear W20958698612023 @default.
- W2095869861 crossrefType "journal-article" @default.
- W2095869861 hasAuthorship W2095869861A5008550545 @default.
- W2095869861 hasAuthorship W2095869861A5026116973 @default.
- W2095869861 hasAuthorship W2095869861A5031680851 @default.
- W2095869861 hasAuthorship W2095869861A5034078423 @default.
- W2095869861 hasAuthorship W2095869861A5034574139 @default.
- W2095869861 hasAuthorship W2095869861A5087577528 @default.
- W2095869861 hasConcept C105795698 @default.
- W2095869861 hasConcept C106131492 @default.
- W2095869861 hasConcept C11413529 @default.
- W2095869861 hasConcept C138885662 @default.
- W2095869861 hasConcept C154945302 @default.
- W2095869861 hasConcept C161840515 @default.
- W2095869861 hasConcept C165064840 @default.
- W2095869861 hasConcept C166957645 @default.
- W2095869861 hasConcept C198352243 @default.
- W2095869861 hasConcept C19966478 @default.
- W2095869861 hasConcept C202444582 @default.
- W2095869861 hasConcept C205649164 @default.
- W2095869861 hasConcept C2524010 @default.
- W2095869861 hasConcept C2776401178 @default.
- W2095869861 hasConcept C2776650193 @default.
- W2095869861 hasConcept C31972630 @default.
- W2095869861 hasConcept C33923547 @default.
- W2095869861 hasConcept C41008148 @default.
- W2095869861 hasConcept C41895202 @default.
- W2095869861 hasConcept C51399673 @default.
- W2095869861 hasConcept C58640448 @default.
- W2095869861 hasConcept C62649853 @default.
- W2095869861 hasConcept C6683253 @default.
- W2095869861 hasConcept C90509273 @default.
- W2095869861 hasConcept C9652623 @default.
- W2095869861 hasConceptScore W2095869861C105795698 @default.
- W2095869861 hasConceptScore W2095869861C106131492 @default.
- W2095869861 hasConceptScore W2095869861C11413529 @default.
- W2095869861 hasConceptScore W2095869861C138885662 @default.
- W2095869861 hasConceptScore W2095869861C154945302 @default.
- W2095869861 hasConceptScore W2095869861C161840515 @default.
- W2095869861 hasConceptScore W2095869861C165064840 @default.
- W2095869861 hasConceptScore W2095869861C166957645 @default.
- W2095869861 hasConceptScore W2095869861C198352243 @default.
- W2095869861 hasConceptScore W2095869861C19966478 @default.
- W2095869861 hasConceptScore W2095869861C202444582 @default.
- W2095869861 hasConceptScore W2095869861C205649164 @default.
- W2095869861 hasConceptScore W2095869861C2524010 @default.
- W2095869861 hasConceptScore W2095869861C2776401178 @default.
- W2095869861 hasConceptScore W2095869861C2776650193 @default.
- W2095869861 hasConceptScore W2095869861C31972630 @default.
- W2095869861 hasConceptScore W2095869861C33923547 @default.
- W2095869861 hasConceptScore W2095869861C41008148 @default.
- W2095869861 hasConceptScore W2095869861C41895202 @default.
- W2095869861 hasConceptScore W2095869861C51399673 @default.
- W2095869861 hasConceptScore W2095869861C58640448 @default.
- W2095869861 hasConceptScore W2095869861C62649853 @default.
- W2095869861 hasConceptScore W2095869861C6683253 @default.