Matches in SemOpenAlex for { <https://semopenalex.org/work/W2096001351> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2096001351 abstract "Let g be a Lie algebra over a field F of characteristic zero, let C be a certain tensor category of representations of g, and C-du a certain category of duals. In arXiv:math.AG/0409053 we associated to C and C-du by a Tannaka reconstruction a monoid M with a coordinate ring F[M] of matrix coefficients, as well as a Lie algebra Lie(M). We interpreted this situation algebraic geometrically. In particular, we showed: If the Lie algebra g is generated by one-parameter elements, then it identifies in a natural way with a subalgebra of Lie(M), and there exists a subgroup of the unit group of M, which is dense in M. We now introduce the coordinate ring of regular functions on this dense subgroup, as well as the algebra of linear regular functions on the universal enveloping algebra of g, and investigate their relation. We investigate and describe various coordinate rings of matrix coefficients associated to categories of integrable representations of g. We specialize to integrable representations of Kac-Moody algebras and free Lie algebras. Some results on coordinate rings of Kac-Moody groups obtained by V. G. Kac and D. Peterson, some coordinate rings of the associated groups of linear algebraic integrable Lie algebras defined by V. G. Kac, and some results on coordinate rings of free Kac-Moody groups obtained by Y. Billig and A. Pianzola fit into this context. We determine the Tannaka monoid associated to the full subcategory of integrable representations in the category O of a Kac-Moody algebra and to its category of full duals. Its Zariski-open dense unit group is the formal Kac-Moody group. We give various descriptions of its coordinate ring of matrix coefficients. We show that its Lie algebra is the formal Kac-Moody algebra." @default.
- W2096001351 created "2016-06-24" @default.
- W2096001351 creator A5026000916 @default.
- W2096001351 date "2004-09-05" @default.
- W2096001351 modified "2023-09-27" @default.
- W2096001351 title "Integrating infinite-dimensional Lie algebras by a Tannaka reconstruction (Part II)" @default.
- W2096001351 cites W145136359 @default.
- W2096001351 cites W152071404 @default.
- W2096001351 cites W1559722032 @default.
- W2096001351 cites W1584561919 @default.
- W2096001351 cites W1606512346 @default.
- W2096001351 cites W1642629289 @default.
- W2096001351 cites W1973489447 @default.
- W2096001351 cites W1975899190 @default.
- W2096001351 cites W1996528514 @default.
- W2096001351 cites W1999835177 @default.
- W2096001351 cites W2024750077 @default.
- W2096001351 cites W2034330721 @default.
- W2096001351 cites W2039044780 @default.
- W2096001351 cites W2097213515 @default.
- W2096001351 cites W2578425206 @default.
- W2096001351 cites W2596181237 @default.
- W2096001351 hasPublicationYear "2004" @default.
- W2096001351 type Work @default.
- W2096001351 sameAs 2096001351 @default.
- W2096001351 citedByCount "2" @default.
- W2096001351 countsByYear W20960013512015 @default.
- W2096001351 crossrefType "posted-content" @default.
- W2096001351 hasAuthorship W2096001351A5026000916 @default.
- W2096001351 hasConcept C136119220 @default.
- W2096001351 hasConcept C155058155 @default.
- W2096001351 hasConcept C178790620 @default.
- W2096001351 hasConcept C185592680 @default.
- W2096001351 hasConcept C202444582 @default.
- W2096001351 hasConcept C206901836 @default.
- W2096001351 hasConcept C2780378348 @default.
- W2096001351 hasConcept C2780617661 @default.
- W2096001351 hasConcept C33923547 @default.
- W2096001351 hasConcept C51568863 @default.
- W2096001351 hasConcept C5475112 @default.
- W2096001351 hasConcept C67996461 @default.
- W2096001351 hasConcept C81999800 @default.
- W2096001351 hasConceptScore W2096001351C136119220 @default.
- W2096001351 hasConceptScore W2096001351C155058155 @default.
- W2096001351 hasConceptScore W2096001351C178790620 @default.
- W2096001351 hasConceptScore W2096001351C185592680 @default.
- W2096001351 hasConceptScore W2096001351C202444582 @default.
- W2096001351 hasConceptScore W2096001351C206901836 @default.
- W2096001351 hasConceptScore W2096001351C2780378348 @default.
- W2096001351 hasConceptScore W2096001351C2780617661 @default.
- W2096001351 hasConceptScore W2096001351C33923547 @default.
- W2096001351 hasConceptScore W2096001351C51568863 @default.
- W2096001351 hasConceptScore W2096001351C5475112 @default.
- W2096001351 hasConceptScore W2096001351C67996461 @default.
- W2096001351 hasConceptScore W2096001351C81999800 @default.
- W2096001351 hasLocation W20960013511 @default.
- W2096001351 hasOpenAccess W2096001351 @default.
- W2096001351 hasPrimaryLocation W20960013511 @default.
- W2096001351 hasRelatedWork W1591938232 @default.
- W2096001351 hasRelatedWork W1604126342 @default.
- W2096001351 hasRelatedWork W1971809816 @default.
- W2096001351 hasRelatedWork W1995863006 @default.
- W2096001351 hasRelatedWork W2030982655 @default.
- W2096001351 hasRelatedWork W2040773877 @default.
- W2096001351 hasRelatedWork W2043663295 @default.
- W2096001351 hasRelatedWork W2050466964 @default.
- W2096001351 hasRelatedWork W2145945008 @default.
- W2096001351 hasRelatedWork W2216584247 @default.
- W2096001351 hasRelatedWork W2237367895 @default.
- W2096001351 hasRelatedWork W2374786989 @default.
- W2096001351 hasRelatedWork W2466661613 @default.
- W2096001351 hasRelatedWork W2951852207 @default.
- W2096001351 hasRelatedWork W2951887843 @default.
- W2096001351 hasRelatedWork W2955198462 @default.
- W2096001351 hasRelatedWork W2963204460 @default.
- W2096001351 hasRelatedWork W3098204434 @default.
- W2096001351 hasRelatedWork W3105863259 @default.
- W2096001351 hasRelatedWork W3111896982 @default.
- W2096001351 isParatext "false" @default.
- W2096001351 isRetracted "false" @default.
- W2096001351 magId "2096001351" @default.
- W2096001351 workType "article" @default.