Matches in SemOpenAlex for { <https://semopenalex.org/work/W2096001802> ?p ?o ?g. }
- W2096001802 abstract "Recently, the acquisition of high-resolution T 1 maps in a clinically feasible time frame has been demonstrated with Driven Equilibrium Single Pulse Observation of T 1 (DESPOT1). DESPOT1 derives the longitudinal relaxation time, T 1 , from two or more spoiled gradient recalled echo (SPGR) images acquired with a constant T R and different flip angles. In general, T 1 can be estimated from two or more SPGR images. Estimation of MR parameters (T 1 , M 0 , etc.) from these sequences is challenging and susceptible to the level of noise in signal acquisition. Methods such as Simplex Optimization, Weighted Non-Linear Least Squares (WNLS), Linear Least Square (LLS or Gupta's LLS), and Intensity based Linear Least Square (ILLS) method have been employed to estimate T 1 . In both linear and non-linear methods, the estimated T 1 values are highly dependent on defining the weighting factors; errors in these weighting factors can result in a biased estimate of T 1 . In this study, an adaptive neural network (ANN) is introduced, trained and evaluated. The ANN was trained using an analytical model of the SPGR signal in the presence of different levels of signal to noise ratio (2 to 30). Receiver Operator Characteristic (ROC) analysis and the K-fold cross-validation (KFCV) method were employed to train, test, and optimize the network. The result (Az=0.81) shows that, compared to the other techniques, ANNs can provide a faster and unbiased estimate of T 1 from SPGR signals." @default.
- W2096001802 created "2016-06-24" @default.
- W2096001802 creator A5005492660 @default.
- W2096001802 creator A5021807836 @default.
- W2096001802 creator A5024671111 @default.
- W2096001802 creator A5031803565 @default.
- W2096001802 creator A5043844658 @default.
- W2096001802 creator A5059036518 @default.
- W2096001802 creator A5069699492 @default.
- W2096001802 creator A5084457245 @default.
- W2096001802 date "2011-07-01" @default.
- W2096001802 modified "2023-09-26" @default.
- W2096001802 title "Magnetic resonance estimation of longitudinal relaxation time (T<inf>1</inf>) in spoiled gradient echo using an adaptive neural network" @default.
- W2096001802 cites W1483284482 @default.
- W2096001802 cites W1554663460 @default.
- W2096001802 cites W1972990545 @default.
- W2096001802 cites W1981985750 @default.
- W2096001802 cites W2015841052 @default.
- W2096001802 cites W2019190989 @default.
- W2096001802 cites W2019446048 @default.
- W2096001802 cites W2022514814 @default.
- W2096001802 cites W2028909330 @default.
- W2096001802 cites W2043725557 @default.
- W2096001802 cites W2050682684 @default.
- W2096001802 cites W2051808218 @default.
- W2096001802 cites W2072626310 @default.
- W2096001802 cites W2081878981 @default.
- W2096001802 cites W2084593331 @default.
- W2096001802 cites W2102248491 @default.
- W2096001802 cites W2127384112 @default.
- W2096001802 cites W2134314935 @default.
- W2096001802 cites W2142585416 @default.
- W2096001802 cites W2145945239 @default.
- W2096001802 cites W2151682263 @default.
- W2096001802 cites W2153508051 @default.
- W2096001802 cites W2160883143 @default.
- W2096001802 doi "https://doi.org/10.1109/ijcnn.2011.6033552" @default.
- W2096001802 hasPublicationYear "2011" @default.
- W2096001802 type Work @default.
- W2096001802 sameAs 2096001802 @default.
- W2096001802 citedByCount "2" @default.
- W2096001802 countsByYear W20960018022012 @default.
- W2096001802 countsByYear W20960018022017 @default.
- W2096001802 crossrefType "proceedings-article" @default.
- W2096001802 hasAuthorship W2096001802A5005492660 @default.
- W2096001802 hasAuthorship W2096001802A5021807836 @default.
- W2096001802 hasAuthorship W2096001802A5024671111 @default.
- W2096001802 hasAuthorship W2096001802A5031803565 @default.
- W2096001802 hasAuthorship W2096001802A5043844658 @default.
- W2096001802 hasAuthorship W2096001802A5059036518 @default.
- W2096001802 hasAuthorship W2096001802A5069699492 @default.
- W2096001802 hasAuthorship W2096001802A5084457245 @default.
- W2096001802 hasConcept C105795698 @default.
- W2096001802 hasConcept C11413529 @default.
- W2096001802 hasConcept C115961682 @default.
- W2096001802 hasConcept C121332964 @default.
- W2096001802 hasConcept C131109320 @default.
- W2096001802 hasConcept C153180895 @default.
- W2096001802 hasConcept C154945302 @default.
- W2096001802 hasConcept C15744967 @default.
- W2096001802 hasConcept C183115368 @default.
- W2096001802 hasConcept C24890656 @default.
- W2096001802 hasConcept C2776029896 @default.
- W2096001802 hasConcept C33923547 @default.
- W2096001802 hasConcept C41008148 @default.
- W2096001802 hasConcept C48921125 @default.
- W2096001802 hasConcept C50644808 @default.
- W2096001802 hasConcept C77805123 @default.
- W2096001802 hasConcept C99498987 @default.
- W2096001802 hasConceptScore W2096001802C105795698 @default.
- W2096001802 hasConceptScore W2096001802C11413529 @default.
- W2096001802 hasConceptScore W2096001802C115961682 @default.
- W2096001802 hasConceptScore W2096001802C121332964 @default.
- W2096001802 hasConceptScore W2096001802C131109320 @default.
- W2096001802 hasConceptScore W2096001802C153180895 @default.
- W2096001802 hasConceptScore W2096001802C154945302 @default.
- W2096001802 hasConceptScore W2096001802C15744967 @default.
- W2096001802 hasConceptScore W2096001802C183115368 @default.
- W2096001802 hasConceptScore W2096001802C24890656 @default.
- W2096001802 hasConceptScore W2096001802C2776029896 @default.
- W2096001802 hasConceptScore W2096001802C33923547 @default.
- W2096001802 hasConceptScore W2096001802C41008148 @default.
- W2096001802 hasConceptScore W2096001802C48921125 @default.
- W2096001802 hasConceptScore W2096001802C50644808 @default.
- W2096001802 hasConceptScore W2096001802C77805123 @default.
- W2096001802 hasConceptScore W2096001802C99498987 @default.
- W2096001802 hasLocation W20960018021 @default.
- W2096001802 hasOpenAccess W2096001802 @default.
- W2096001802 hasPrimaryLocation W20960018021 @default.
- W2096001802 hasRelatedWork W2017380396 @default.
- W2096001802 hasRelatedWork W2029452893 @default.
- W2096001802 hasRelatedWork W2067409402 @default.
- W2096001802 hasRelatedWork W2102248491 @default.
- W2096001802 hasRelatedWork W2125144698 @default.
- W2096001802 hasRelatedWork W2134314935 @default.
- W2096001802 hasRelatedWork W2293274218 @default.
- W2096001802 hasRelatedWork W2521575445 @default.
- W2096001802 hasRelatedWork W2607021374 @default.
- W2096001802 hasRelatedWork W2806463900 @default.
- W2096001802 hasRelatedWork W2894621600 @default.