Matches in SemOpenAlex for { <https://semopenalex.org/work/W2096008230> ?p ?o ?g. }
- W2096008230 endingPage "901" @default.
- W2096008230 startingPage "893" @default.
- W2096008230 abstract "In the production of chemicals via microbial fermentation, achieving a high yield is one of the most important objectives. We developed a statistical model to analyze influential factors that determine product yield by compiling data obtained from engineered Escherichia coli developed within last 10 years. Using both numerical and ordinal variables (e.g., enzymatic steps, cultivation conditions, and genetic modifications) as input parameters, our model revealed that cultivation modes, nutrient supplementation, and oxygen conditions were the three significant factors for improving product yield. Generally, the model showed that product yield decreases as the number of enzymatic steps in the biosynthesis pathway increases (7-9% loss of yield per enzymatic step). Moreover, overexpression of enzymes or removal of competitive pathways (e.g., knockout) does not necessarily result in an amplification of product yield (P-value>0.1), possibly because of limited capacity in the biosynthesis pathway to accommodate an increase in flux. The model not only provides general guidelines for metabolic engineering and fermentation processes, but also allows a priori estimation and comparison of product yields under designed cultivation conditions." @default.
- W2096008230 created "2016-06-24" @default.
- W2096008230 creator A5019345945 @default.
- W2096008230 creator A5053406304 @default.
- W2096008230 creator A5056735073 @default.
- W2096008230 creator A5077479086 @default.
- W2096008230 creator A5087199629 @default.
- W2096008230 creator A5087842972 @default.
- W2096008230 date "2010-11-30" @default.
- W2096008230 modified "2023-10-10" @default.
- W2096008230 title "Evaluating Factors That Influence Microbial Synthesis Yields by Linear Regression with Numerical and Ordinal Variables" @default.
- W2096008230 cites W1524809087 @default.
- W2096008230 cites W1965409125 @default.
- W2096008230 cites W1972549326 @default.
- W2096008230 cites W1975597731 @default.
- W2096008230 cites W1978119727 @default.
- W2096008230 cites W1987610422 @default.
- W2096008230 cites W2010451964 @default.
- W2096008230 cites W2010930876 @default.
- W2096008230 cites W2018994057 @default.
- W2096008230 cites W2022598269 @default.
- W2096008230 cites W2022751806 @default.
- W2096008230 cites W2022761336 @default.
- W2096008230 cites W2028681077 @default.
- W2096008230 cites W2033646322 @default.
- W2096008230 cites W2034645234 @default.
- W2096008230 cites W2040317751 @default.
- W2096008230 cites W2053181423 @default.
- W2096008230 cites W2054506883 @default.
- W2096008230 cites W2056924389 @default.
- W2096008230 cites W2069527467 @default.
- W2096008230 cites W2079347688 @default.
- W2096008230 cites W2083693802 @default.
- W2096008230 cites W2084094917 @default.
- W2096008230 cites W2087681701 @default.
- W2096008230 cites W2091124334 @default.
- W2096008230 cites W2110384600 @default.
- W2096008230 cites W2113674809 @default.
- W2096008230 cites W2117679257 @default.
- W2096008230 cites W2124180487 @default.
- W2096008230 cites W2133125052 @default.
- W2096008230 cites W2142032844 @default.
- W2096008230 cites W2147516046 @default.
- W2096008230 cites W2149842777 @default.
- W2096008230 cites W2150088285 @default.
- W2096008230 cites W2151563867 @default.
- W2096008230 cites W2154767435 @default.
- W2096008230 cites W2158571208 @default.
- W2096008230 cites W2166212205 @default.
- W2096008230 cites W4243342032 @default.
- W2096008230 doi "https://doi.org/10.1002/bit.22996" @default.
- W2096008230 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21404262" @default.
- W2096008230 hasPublicationYear "2010" @default.
- W2096008230 type Work @default.
- W2096008230 sameAs 2096008230 @default.
- W2096008230 citedByCount "32" @default.
- W2096008230 countsByYear W20960082302013 @default.
- W2096008230 countsByYear W20960082302014 @default.
- W2096008230 countsByYear W20960082302015 @default.
- W2096008230 countsByYear W20960082302016 @default.
- W2096008230 countsByYear W20960082302017 @default.
- W2096008230 countsByYear W20960082302018 @default.
- W2096008230 countsByYear W20960082302019 @default.
- W2096008230 countsByYear W20960082302020 @default.
- W2096008230 countsByYear W20960082302021 @default.
- W2096008230 countsByYear W20960082302022 @default.
- W2096008230 countsByYear W20960082302023 @default.
- W2096008230 crossrefType "journal-article" @default.
- W2096008230 hasAuthorship W2096008230A5019345945 @default.
- W2096008230 hasAuthorship W2096008230A5053406304 @default.
- W2096008230 hasAuthorship W2096008230A5056735073 @default.
- W2096008230 hasAuthorship W2096008230A5077479086 @default.
- W2096008230 hasAuthorship W2096008230A5087199629 @default.
- W2096008230 hasAuthorship W2096008230A5087842972 @default.
- W2096008230 hasConcept C100544194 @default.
- W2096008230 hasConcept C105795698 @default.
- W2096008230 hasConcept C111472728 @default.
- W2096008230 hasConcept C121332964 @default.
- W2096008230 hasConcept C127413603 @default.
- W2096008230 hasConcept C134121241 @default.
- W2096008230 hasConcept C138885662 @default.
- W2096008230 hasConcept C150903083 @default.
- W2096008230 hasConcept C181199279 @default.
- W2096008230 hasConcept C183696295 @default.
- W2096008230 hasConcept C186060115 @default.
- W2096008230 hasConcept C2524010 @default.
- W2096008230 hasConcept C31903555 @default.
- W2096008230 hasConcept C33923547 @default.
- W2096008230 hasConcept C48921125 @default.
- W2096008230 hasConcept C55493867 @default.
- W2096008230 hasConcept C6350086 @default.
- W2096008230 hasConcept C75553542 @default.
- W2096008230 hasConcept C86803240 @default.
- W2096008230 hasConcept C90673727 @default.
- W2096008230 hasConcept C97355855 @default.
- W2096008230 hasConceptScore W2096008230C100544194 @default.
- W2096008230 hasConceptScore W2096008230C105795698 @default.
- W2096008230 hasConceptScore W2096008230C111472728 @default.