Matches in SemOpenAlex for { <https://semopenalex.org/work/W2096024500> ?p ?o ?g. }
- W2096024500 abstract "Wireless coverage of the end-user domain, be it outdoors or indoors (in-building), is poised to become an essential part of broadband communication networks. In order to offer integrated broadband services (combining voice, data, video, multimedia services, and new value added services), these systems will need to offer higher data transmission capacities well beyond the present-day standards of wireless systems. Wireless LAN (IEEE802.11a/b/g) offering up-to 54 Mbps and operating at 2.4 GHz and 5 GHz, and 3G mobile networks (IMT2000/UMTS) offering up-to 2 Mbps and operating around 2 GHz, are some of today’s main wireless standards. IEEE802.16 or WiMAX is another recent standard aiming to bridge the last mile through mobile and fixed wireless access to the end user at frequencies between 2 – 66 GHz. The need for increased capacity per unit area leads to higher operating frequencies (above 6 GHz) and smaller radio cells, especially in in-door applications where the high operating frequencies encounter tremendously high losses through the building walls. To reduce the system installation and maintenance costs of such systems, it is imperative to make the radio antenna units as simple as possible. This may be achieved by consolidating signal processing functions at a centralised headend, through radio-over-fibre technology. The research in this thesis focussed on the feasibility of using both single-mode and multimode fibres to distribute high-frequency microwave signals to simplified remote radio antenna units. An alternative radio-over-fibre technique, termed Optical Frequency Multiplication (OFM) has been investigated. OFM entails the periodic filtering of a swept optical signal at the headend followed by photodetection at the radio access unit. A low sweep frequency (e.g. 3 GHz) is used. After photodetection at the remote radio access unit, high-frequency (>21 GHz) harmonic components of the sweep signal are generated. The desired microwave signal is selected by means of bandpass filtering, amplified, and radiated by the antenna. Modulated microwave carriers are generated by intensity modulating the frequency-swept optical signal. Through modelling, simulations, and extensive experiments, the behaviour and performance of a radio-over-fibre downlink employing OFM was investigated. Simulation and comprehensive experimental results showed that OFM can be used to generate pure high-frequency microwave signals with very narrow linewidth and low SSB phase noise. This is because in the OFM process laser phase noise is inherently suppressed. The low-phase noise capability of OFM enables it to support the delivery of carriers modulated not only by the simple ASK data format, but also by complex multilevel modulation formats such as BPSK, QPSK, and x-level QAM. Multicarrier signals such as Subcarrier Multiplexed signals, and OFDM signals used in wireless LANs are also supported. Low Error Vector Magnitudes (below 5%) were obtained for x-QAM modulation formats, including 64-QAM. BER measurements showed a modal dispersion penalty of about 1 dB for a 4.4 km MMF link under restricted launch condition. It was established that OFM is chromatic dispersion tolerant and can support more than 10 times longer single-mode fibre transmission links (exceeding 50 km) than IMDD systems, which suffer from the chromatic-dispersion-induced amplitude suppression. OFM also enables the delivery of microwave carriers exceeding the modal bandwidth of MMFs, by using the higher transmission passbands of the fibre response. Silica glass MMF links of more than 4 km are feasible. The maximum link length, which can be bridged with Polymer Optical Fibre (POF) is significantly shorter, owing to its higher attenuation values. Thus POF may be more attractive for in-building applications where link lengths of 500m are often sufficient. Several different implementations of the Mach Zehnder Interferometer, and the Fabry Perot Interferometer filters were considered to determine their simplicity, performance, and applicability within the end-user environment. It was established that the wavelength of the optical FM source needs to be carefully aligned to the characteristics of the periodic optical filter. Therefore, it is preferred that both the source and the filter are co-located. This makes it easier to employ electronic tuning control of the filter (e.g. a fibre Fabry Perot Interferometer), so as to automatically track the alignment with the optical source, resulting in remarkable improvement of the OFM system stability. The ability to achieve high frequency multiplication factors, good phase noise performance, the support for all modulation formats, and the ability to operate on both single-mode and MMFs, all make OFM ideal for use in high-frequency (>5 GHz) broadband wireless system applications." @default.
- W2096024500 created "2016-06-24" @default.
- W2096024500 creator A5081304514 @default.
- W2096024500 date "2005-01-01" @default.
- W2096024500 modified "2023-09-23" @default.
- W2096024500 title "Radio-over-fibre technology for broadband wireless communication systems" @default.
- W2096024500 cites W1492292847 @default.
- W2096024500 cites W1499590998 @default.
- W2096024500 cites W1516085069 @default.
- W2096024500 cites W1542021384 @default.
- W2096024500 cites W1551552713 @default.
- W2096024500 cites W1554738895 @default.
- W2096024500 cites W1586942832 @default.
- W2096024500 cites W1595104169 @default.
- W2096024500 cites W1595413744 @default.
- W2096024500 cites W1596734269 @default.
- W2096024500 cites W1599622893 @default.
- W2096024500 cites W1600507282 @default.
- W2096024500 cites W1606334409 @default.
- W2096024500 cites W1608000172 @default.
- W2096024500 cites W1629977703 @default.
- W2096024500 cites W1808858763 @default.
- W2096024500 cites W1813278523 @default.
- W2096024500 cites W1889956517 @default.
- W2096024500 cites W1895153311 @default.
- W2096024500 cites W1964911177 @default.
- W2096024500 cites W1966350292 @default.
- W2096024500 cites W1980297597 @default.
- W2096024500 cites W1980610319 @default.
- W2096024500 cites W1994627030 @default.
- W2096024500 cites W2004550057 @default.
- W2096024500 cites W2005480629 @default.
- W2096024500 cites W2021516188 @default.
- W2096024500 cites W2031107024 @default.
- W2096024500 cites W2038234351 @default.
- W2096024500 cites W2043885815 @default.
- W2096024500 cites W2059008303 @default.
- W2096024500 cites W2075369331 @default.
- W2096024500 cites W2081338783 @default.
- W2096024500 cites W2082698980 @default.
- W2096024500 cites W2084596605 @default.
- W2096024500 cites W2090608685 @default.
- W2096024500 cites W2098053768 @default.
- W2096024500 cites W2098100807 @default.
- W2096024500 cites W2098984199 @default.
- W2096024500 cites W2099057602 @default.
- W2096024500 cites W2099722214 @default.
- W2096024500 cites W2100169920 @default.
- W2096024500 cites W2112994763 @default.
- W2096024500 cites W2113441062 @default.
- W2096024500 cites W2114631635 @default.
- W2096024500 cites W2114694765 @default.
- W2096024500 cites W2117528706 @default.
- W2096024500 cites W2117651984 @default.
- W2096024500 cites W2123127817 @default.
- W2096024500 cites W2125006300 @default.
- W2096024500 cites W2126336766 @default.
- W2096024500 cites W2126909936 @default.
- W2096024500 cites W2128301900 @default.
- W2096024500 cites W2128721835 @default.
- W2096024500 cites W2132963686 @default.
- W2096024500 cites W2134194952 @default.
- W2096024500 cites W2139463444 @default.
- W2096024500 cites W2141176248 @default.
- W2096024500 cites W2141851886 @default.
- W2096024500 cites W2142535907 @default.
- W2096024500 cites W2143416899 @default.
- W2096024500 cites W2144222355 @default.
- W2096024500 cites W2152172119 @default.
- W2096024500 cites W2152362441 @default.
- W2096024500 cites W2152490999 @default.
- W2096024500 cites W2158434649 @default.
- W2096024500 cites W2165742488 @default.
- W2096024500 cites W2165849657 @default.
- W2096024500 cites W2165931094 @default.
- W2096024500 cites W2167406408 @default.
- W2096024500 cites W2167793309 @default.
- W2096024500 cites W2170112898 @default.
- W2096024500 cites W2171565453 @default.
- W2096024500 cites W2285924533 @default.
- W2096024500 cites W2504469539 @default.
- W2096024500 cites W2548141993 @default.
- W2096024500 cites W567062241 @default.
- W2096024500 cites W588628281 @default.
- W2096024500 cites W633038780 @default.
- W2096024500 cites W635485303 @default.
- W2096024500 cites W86206252 @default.
- W2096024500 cites W140114091 @default.
- W2096024500 cites W219788008 @default.
- W2096024500 cites W2820390380 @default.
- W2096024500 doi "https://doi.org/10.6100/ir592332" @default.
- W2096024500 hasPublicationYear "2005" @default.
- W2096024500 type Work @default.
- W2096024500 sameAs 2096024500 @default.
- W2096024500 citedByCount "42" @default.
- W2096024500 countsByYear W20960245002012 @default.
- W2096024500 countsByYear W20960245002013 @default.
- W2096024500 countsByYear W20960245002014 @default.
- W2096024500 countsByYear W20960245002015 @default.
- W2096024500 countsByYear W20960245002018 @default.