Matches in SemOpenAlex for { <https://semopenalex.org/work/W2096032932> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2096032932 endingPage "2747" @default.
- W2096032932 startingPage "2735" @default.
- W2096032932 abstract "This paper presents and evaluates artificial neural network (ANN) models used for macrocell path-loss prediction. Measurement data obtained by utilizing the IS-95 pilot signal from a commercial code-division multiple-access (CDMA) mobile network in rural Australia are used to train and evaluate the models. A simple neuron model and feed-forward networks with different numbers of hidden layers and neurons are evaluated regarding their training time, prediction accuracy, and generalization properties. Furthermore, different backpropagation training algorithms, such as gradient descent and Levenberg-Marquardt, are evaluated. The artificial neural network inputs are chosen to be distance to base station, parameters easily obtained from terrain path profiles, land usage, and vegetation type and density near the receiving antenna. The path-loss prediction results obtained by using the ANN models are evaluated against different versions of the semi-terrain based propagation model Recommendation ITU-R P.1546 and the Okumura-Hata model. The statistical analysis shows that a non-complex ANN model performs very well compared with traditional propagation models with regard to prediction accuracy, complexity, and prediction time. The average ANN prediction results were 1) maximum error: 22 dB; 2) mean error: 0 dB; and 3) standard deviation: 7 dB. A multilayered feed-forward network trained using the standard backpropagation algorithm was compared with a neuron model trained using the Levenberg-Marquardt algorithm. It was found that the training time decreases from 150 000 to 10 iterations, while the prediction accuracy is maintained." @default.
- W2096032932 created "2016-06-24" @default.
- W2096032932 creator A5029649976 @default.
- W2096032932 creator A5073263665 @default.
- W2096032932 creator A5073318200 @default.
- W2096032932 date "2010-07-01" @default.
- W2096032932 modified "2023-10-09" @default.
- W2096032932 title "Macrocell Path-Loss Prediction Using Artificial Neural Networks" @default.
- W2096032932 cites W2004993104 @default.
- W2096032932 cites W2078103332 @default.
- W2096032932 cites W2096250400 @default.
- W2096032932 cites W2099878889 @default.
- W2096032932 cites W2102457675 @default.
- W2096032932 cites W2111051539 @default.
- W2096032932 cites W2117728182 @default.
- W2096032932 cites W2117997407 @default.
- W2096032932 cites W2129312813 @default.
- W2096032932 cites W2148031429 @default.
- W2096032932 cites W2151859334 @default.
- W2096032932 cites W2155482699 @default.
- W2096032932 cites W2480466982 @default.
- W2096032932 cites W2911546748 @default.
- W2096032932 cites W391578156 @default.
- W2096032932 cites W4241043941 @default.
- W2096032932 cites W4301359260 @default.
- W2096032932 doi "https://doi.org/10.1109/tvt.2010.2050502" @default.
- W2096032932 hasPublicationYear "2010" @default.
- W2096032932 type Work @default.
- W2096032932 sameAs 2096032932 @default.
- W2096032932 citedByCount "165" @default.
- W2096032932 countsByYear W20960329322012 @default.
- W2096032932 countsByYear W20960329322014 @default.
- W2096032932 countsByYear W20960329322015 @default.
- W2096032932 countsByYear W20960329322016 @default.
- W2096032932 countsByYear W20960329322017 @default.
- W2096032932 countsByYear W20960329322018 @default.
- W2096032932 countsByYear W20960329322019 @default.
- W2096032932 countsByYear W20960329322020 @default.
- W2096032932 countsByYear W20960329322021 @default.
- W2096032932 countsByYear W20960329322022 @default.
- W2096032932 countsByYear W20960329322023 @default.
- W2096032932 crossrefType "journal-article" @default.
- W2096032932 hasAuthorship W2096032932A5029649976 @default.
- W2096032932 hasAuthorship W2096032932A5073263665 @default.
- W2096032932 hasAuthorship W2096032932A5073318200 @default.
- W2096032932 hasBestOaLocation W20960329322 @default.
- W2096032932 hasConcept C127413603 @default.
- W2096032932 hasConcept C154945302 @default.
- W2096032932 hasConcept C24326235 @default.
- W2096032932 hasConcept C2777735758 @default.
- W2096032932 hasConcept C2778291847 @default.
- W2096032932 hasConcept C31258907 @default.
- W2096032932 hasConcept C41008148 @default.
- W2096032932 hasConcept C50644808 @default.
- W2096032932 hasConcept C68649174 @default.
- W2096032932 hasConcept C76155785 @default.
- W2096032932 hasConceptScore W2096032932C127413603 @default.
- W2096032932 hasConceptScore W2096032932C154945302 @default.
- W2096032932 hasConceptScore W2096032932C24326235 @default.
- W2096032932 hasConceptScore W2096032932C2777735758 @default.
- W2096032932 hasConceptScore W2096032932C2778291847 @default.
- W2096032932 hasConceptScore W2096032932C31258907 @default.
- W2096032932 hasConceptScore W2096032932C41008148 @default.
- W2096032932 hasConceptScore W2096032932C50644808 @default.
- W2096032932 hasConceptScore W2096032932C68649174 @default.
- W2096032932 hasConceptScore W2096032932C76155785 @default.
- W2096032932 hasIssue "6" @default.
- W2096032932 hasLocation W20960329321 @default.
- W2096032932 hasLocation W20960329322 @default.
- W2096032932 hasOpenAccess W2096032932 @default.
- W2096032932 hasPrimaryLocation W20960329321 @default.
- W2096032932 hasRelatedWork W1986439517 @default.
- W2096032932 hasRelatedWork W2023505575 @default.
- W2096032932 hasRelatedWork W2125453582 @default.
- W2096032932 hasRelatedWork W2371125232 @default.
- W2096032932 hasRelatedWork W2373437113 @default.
- W2096032932 hasRelatedWork W2386387936 @default.
- W2096032932 hasRelatedWork W2899084033 @default.
- W2096032932 hasRelatedWork W3001020386 @default.
- W2096032932 hasRelatedWork W4362499384 @default.
- W2096032932 hasRelatedWork W1629725936 @default.
- W2096032932 hasVolume "59" @default.
- W2096032932 isParatext "false" @default.
- W2096032932 isRetracted "false" @default.
- W2096032932 magId "2096032932" @default.
- W2096032932 workType "article" @default.