Matches in SemOpenAlex for { <https://semopenalex.org/work/W2096164879> ?p ?o ?g. }
- W2096164879 endingPage "305" @default.
- W2096164879 startingPage "298" @default.
- W2096164879 abstract "Microarrays are widely used to measure gene expression differences between sets of biological samples. Many of these differences will be due to differences in the activities of transcription factors. In principle, these differences can be detected by associating motifs in promoters with differences in gene expression levels between the groups. In practice, this is hard to do.We combine correspondence analysis, between group analysis and co-inertia analysis to determine which motifs, from a database of promoter motifs, are strongly associated with differences in gene expression levels. Given a database of motifs and gene expression levels from a set of arrays, the method produces a ranked list of motifs associated with any specified split in the arrays. We give an example using the Gene Atlas compendium of gene expression levels for human tissues where we search for motifs that are associated with expression in central nervous system (CNS) or muscle tissues. Most of the motifs that we find are known from previous work to be strongly associated with expression in CNS or muscle. We give a second example using a published prostate cancer dataset where we can simply and clearly find which transcriptional pathways are associated with differences between benign and metastatic samples.The source code is freely available upon request from the authors." @default.
- W2096164879 created "2016-06-24" @default.
- W2096164879 creator A5009977791 @default.
- W2096164879 creator A5013133004 @default.
- W2096164879 creator A5051318124 @default.
- W2096164879 creator A5061321901 @default.
- W2096164879 creator A5062243310 @default.
- W2096164879 creator A5090607558 @default.
- W2096164879 date "2006-11-24" @default.
- W2096164879 modified "2023-10-14" @default.
- W2096164879 title "Integrating transcription factor binding site information with gene expression datasets" @default.
- W2096164879 cites W1509896227 @default.
- W2096164879 cites W1537484231 @default.
- W2096164879 cites W1824412389 @default.
- W2096164879 cites W1845077221 @default.
- W2096164879 cites W1966089218 @default.
- W2096164879 cites W1967978971 @default.
- W2096164879 cites W1967990571 @default.
- W2096164879 cites W1972621197 @default.
- W2096164879 cites W1974948854 @default.
- W2096164879 cites W1975032646 @default.
- W2096164879 cites W1984153456 @default.
- W2096164879 cites W1988393300 @default.
- W2096164879 cites W1988738875 @default.
- W2096164879 cites W1998300401 @default.
- W2096164879 cites W2005028383 @default.
- W2096164879 cites W2012932423 @default.
- W2096164879 cites W2022756254 @default.
- W2096164879 cites W2035421116 @default.
- W2096164879 cites W2035857873 @default.
- W2096164879 cites W2036064764 @default.
- W2096164879 cites W2036475318 @default.
- W2096164879 cites W2051800786 @default.
- W2096164879 cites W2059848727 @default.
- W2096164879 cites W2060034746 @default.
- W2096164879 cites W2068011423 @default.
- W2096164879 cites W2070293940 @default.
- W2096164879 cites W2076466561 @default.
- W2096164879 cites W2076616438 @default.
- W2096164879 cites W2078092202 @default.
- W2096164879 cites W2080891648 @default.
- W2096164879 cites W2084620487 @default.
- W2096164879 cites W2085442947 @default.
- W2096164879 cites W2095270744 @default.
- W2096164879 cites W2097553067 @default.
- W2096164879 cites W2113833510 @default.
- W2096164879 cites W2115955355 @default.
- W2096164879 cites W2117943667 @default.
- W2096164879 cites W2119958264 @default.
- W2096164879 cites W2124236629 @default.
- W2096164879 cites W2129943843 @default.
- W2096164879 cites W2131666115 @default.
- W2096164879 cites W2138123431 @default.
- W2096164879 cites W2143423915 @default.
- W2096164879 cites W2148379812 @default.
- W2096164879 cites W2158314946 @default.
- W2096164879 cites W2170989872 @default.
- W2096164879 cites W2316386966 @default.
- W2096164879 cites W2332208732 @default.
- W2096164879 cites W4294107304 @default.
- W2096164879 doi "https://doi.org/10.1093/bioinformatics/btl597" @default.
- W2096164879 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17127681" @default.
- W2096164879 hasPublicationYear "2006" @default.
- W2096164879 type Work @default.
- W2096164879 sameAs 2096164879 @default.
- W2096164879 citedByCount "37" @default.
- W2096164879 countsByYear W20961648792012 @default.
- W2096164879 countsByYear W20961648792013 @default.
- W2096164879 countsByYear W20961648792014 @default.
- W2096164879 countsByYear W20961648792017 @default.
- W2096164879 countsByYear W20961648792019 @default.
- W2096164879 countsByYear W20961648792021 @default.
- W2096164879 crossrefType "journal-article" @default.
- W2096164879 hasAuthorship W2096164879A5009977791 @default.
- W2096164879 hasAuthorship W2096164879A5013133004 @default.
- W2096164879 hasAuthorship W2096164879A5051318124 @default.
- W2096164879 hasAuthorship W2096164879A5061321901 @default.
- W2096164879 hasAuthorship W2096164879A5062243310 @default.
- W2096164879 hasAuthorship W2096164879A5090607558 @default.
- W2096164879 hasBestOaLocation W20961648791 @default.
- W2096164879 hasConcept C101762097 @default.
- W2096164879 hasConcept C104317684 @default.
- W2096164879 hasConcept C141231307 @default.
- W2096164879 hasConcept C141674004 @default.
- W2096164879 hasConcept C150194340 @default.
- W2096164879 hasConcept C165864922 @default.
- W2096164879 hasConcept C166957645 @default.
- W2096164879 hasConcept C189206191 @default.
- W2096164879 hasConcept C2778473407 @default.
- W2096164879 hasConcept C3662595 @default.
- W2096164879 hasConcept C41008148 @default.
- W2096164879 hasConcept C54355233 @default.
- W2096164879 hasConcept C60644358 @default.
- W2096164879 hasConcept C70721500 @default.
- W2096164879 hasConcept C77088390 @default.
- W2096164879 hasConcept C86339819 @default.
- W2096164879 hasConcept C86803240 @default.
- W2096164879 hasConcept C95371953 @default.