Matches in SemOpenAlex for { <https://semopenalex.org/work/W2096166399> ?p ?o ?g. }
- W2096166399 endingPage "18" @default.
- W2096166399 startingPage "3" @default.
- W2096166399 abstract "The interest in nonparametric statistical analysis has grown recently in the field of computational intelligence. In many experimental studies, the lack of the required properties for a proper application of parametric procedures–independence, normality, and homoscedasticity–yields to nonparametric ones the task of performing a rigorous comparison among algorithms. In this paper, we will discuss the basics and give a survey of a complete set of nonparametric procedures developed to perform both pairwise and multiple comparisons, for multi-problem analysis. The test problems of the CEC’2005 special session on real parameter optimization will help to illustrate the use of the tests throughout this tutorial, analyzing the results of a set of well-known evolutionary and swarm intelligence algorithms. This tutorial is concluded with a compilation of considerations and recommendations, which will guide practitioners when using these tests to contrast their experimental results." @default.
- W2096166399 created "2016-06-24" @default.
- W2096166399 creator A5040941316 @default.
- W2096166399 creator A5045016749 @default.
- W2096166399 creator A5070068995 @default.
- W2096166399 creator A5078909305 @default.
- W2096166399 date "2011-03-01" @default.
- W2096166399 modified "2023-10-18" @default.
- W2096166399 title "A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms" @default.
- W2096166399 cites W1514048016 @default.
- W2096166399 cites W1565902586 @default.
- W2096166399 cites W1974758710 @default.
- W2096166399 cites W1989517261 @default.
- W2096166399 cites W1996453501 @default.
- W2096166399 cites W2000950277 @default.
- W2096166399 cites W2016944307 @default.
- W2096166399 cites W2017903413 @default.
- W2096166399 cites W2025917996 @default.
- W2096166399 cites W2027945080 @default.
- W2096166399 cites W2036714085 @default.
- W2096166399 cites W2049736842 @default.
- W2096166399 cites W2054264388 @default.
- W2096166399 cites W2055095649 @default.
- W2096166399 cites W2085031195 @default.
- W2096166399 cites W2115012618 @default.
- W2096166399 cites W2141443530 @default.
- W2096166399 cites W2146713522 @default.
- W2096166399 cites W2156773695 @default.
- W2096166399 cites W2165466912 @default.
- W2096166399 cites W2317320087 @default.
- W2096166399 cites W4213226755 @default.
- W2096166399 cites W4235358875 @default.
- W2096166399 cites W4241069978 @default.
- W2096166399 cites W4245608963 @default.
- W2096166399 cites W4247128285 @default.
- W2096166399 cites W4247675597 @default.
- W2096166399 cites W4248855359 @default.
- W2096166399 cites W4255240758 @default.
- W2096166399 doi "https://doi.org/10.1016/j.swevo.2011.02.002" @default.
- W2096166399 hasPublicationYear "2011" @default.
- W2096166399 type Work @default.
- W2096166399 sameAs 2096166399 @default.
- W2096166399 citedByCount "3719" @default.
- W2096166399 countsByYear W20961663992012 @default.
- W2096166399 countsByYear W20961663992013 @default.
- W2096166399 countsByYear W20961663992014 @default.
- W2096166399 countsByYear W20961663992015 @default.
- W2096166399 countsByYear W20961663992016 @default.
- W2096166399 countsByYear W20961663992017 @default.
- W2096166399 countsByYear W20961663992018 @default.
- W2096166399 countsByYear W20961663992019 @default.
- W2096166399 countsByYear W20961663992020 @default.
- W2096166399 countsByYear W20961663992021 @default.
- W2096166399 countsByYear W20961663992022 @default.
- W2096166399 countsByYear W20961663992023 @default.
- W2096166399 crossrefType "journal-article" @default.
- W2096166399 hasAuthorship W2096166399A5040941316 @default.
- W2096166399 hasAuthorship W2096166399A5045016749 @default.
- W2096166399 hasAuthorship W2096166399A5070068995 @default.
- W2096166399 hasAuthorship W2096166399A5078909305 @default.
- W2096166399 hasConcept C102366305 @default.
- W2096166399 hasConcept C105795698 @default.
- W2096166399 hasConcept C11413529 @default.
- W2096166399 hasConcept C117251300 @default.
- W2096166399 hasConcept C119487961 @default.
- W2096166399 hasConcept C119857082 @default.
- W2096166399 hasConcept C139502532 @default.
- W2096166399 hasConcept C154945302 @default.
- W2096166399 hasConcept C159149176 @default.
- W2096166399 hasConcept C162324750 @default.
- W2096166399 hasConcept C177264268 @default.
- W2096166399 hasConcept C184898388 @default.
- W2096166399 hasConcept C199360897 @default.
- W2096166399 hasConcept C202532154 @default.
- W2096166399 hasConcept C2776157432 @default.
- W2096166399 hasConcept C33923547 @default.
- W2096166399 hasConcept C35651441 @default.
- W2096166399 hasConcept C41008148 @default.
- W2096166399 hasConcept C539667460 @default.
- W2096166399 hasConcept C85617194 @default.
- W2096166399 hasConcept C87007009 @default.
- W2096166399 hasConceptScore W2096166399C102366305 @default.
- W2096166399 hasConceptScore W2096166399C105795698 @default.
- W2096166399 hasConceptScore W2096166399C11413529 @default.
- W2096166399 hasConceptScore W2096166399C117251300 @default.
- W2096166399 hasConceptScore W2096166399C119487961 @default.
- W2096166399 hasConceptScore W2096166399C119857082 @default.
- W2096166399 hasConceptScore W2096166399C139502532 @default.
- W2096166399 hasConceptScore W2096166399C154945302 @default.
- W2096166399 hasConceptScore W2096166399C159149176 @default.
- W2096166399 hasConceptScore W2096166399C162324750 @default.
- W2096166399 hasConceptScore W2096166399C177264268 @default.
- W2096166399 hasConceptScore W2096166399C184898388 @default.
- W2096166399 hasConceptScore W2096166399C199360897 @default.
- W2096166399 hasConceptScore W2096166399C202532154 @default.
- W2096166399 hasConceptScore W2096166399C2776157432 @default.
- W2096166399 hasConceptScore W2096166399C33923547 @default.
- W2096166399 hasConceptScore W2096166399C35651441 @default.