Matches in SemOpenAlex for { <https://semopenalex.org/work/W2096259797> ?p ?o ?g. }
- W2096259797 endingPage "e13080" @default.
- W2096259797 startingPage "e13080" @default.
- W2096259797 abstract "Difficulties associated with implementing gene therapy are caused by the complexity of the underlying regulatory networks. The forms of interactions between the hundreds of genes, proteins, and metabolites in these networks are not known very accurately. An alternative approach is to limit consideration to genes on the network. Steady state measurements of these influence networks can be obtained from DNA microarray experiments. However, since they contain a large number of nodes, the computation of influence networks requires a prohibitively large set of microarray experiments. Furthermore, error estimates of the network make verifiable predictions impossible.Here, we propose an alternative approach. Rather than attempting to derive an accurate model of the network, we ask what questions can be addressed using lower dimensional, highly simplified models. More importantly, is it possible to use such robust features in applications? We first identify a small group of genes that can be used to affect changes in other nodes of the network. The reduced effective empirical subnetwork (EES) can be computed using steady state measurements on a small number of genetically perturbed systems. We show that the EES can be used to make predictions on expression profiles of other mutants, and to compute how to implement pre-specified changes in the steady state of the underlying biological process. These assertions are verified in a synthetic influence network. We also use previously published experimental data to compute the EES associated with an oxygen deprivation network of E.coli, and use it to predict gene expression levels on a double mutant. The predictions are significantly different from the experimental results for less than of genes.The constraints imposed by gene expression levels of mutants can be used to address a selected set of questions about a gene network." @default.
- W2096259797 created "2016-06-24" @default.
- W2096259797 creator A5001395670 @default.
- W2096259797 creator A5051272561 @default.
- W2096259797 creator A5052570529 @default.
- W2096259797 creator A5068954030 @default.
- W2096259797 date "2010-10-08" @default.
- W2096259797 modified "2023-10-16" @default.
- W2096259797 title "Using Effective Subnetworks to Predict Selected Properties of Gene Networks" @default.
- W2096259797 cites W144423133 @default.
- W2096259797 cites W1559547793 @default.
- W2096259797 cites W1584846756 @default.
- W2096259797 cites W1677575702 @default.
- W2096259797 cites W1963522244 @default.
- W2096259797 cites W1979833590 @default.
- W2096259797 cites W1982309495 @default.
- W2096259797 cites W1987005877 @default.
- W2096259797 cites W1991566301 @default.
- W2096259797 cites W1998639983 @default.
- W2096259797 cites W2014946489 @default.
- W2096259797 cites W2015393683 @default.
- W2096259797 cites W2017424820 @default.
- W2096259797 cites W2018045523 @default.
- W2096259797 cites W2018591360 @default.
- W2096259797 cites W2023757387 @default.
- W2096259797 cites W2044525257 @default.
- W2096259797 cites W2071709661 @default.
- W2096259797 cites W2076372398 @default.
- W2096259797 cites W2084851503 @default.
- W2096259797 cites W2086702565 @default.
- W2096259797 cites W2089458547 @default.
- W2096259797 cites W2091879895 @default.
- W2096259797 cites W2103453943 @default.
- W2096259797 cites W2104107528 @default.
- W2096259797 cites W2106763184 @default.
- W2096259797 cites W2110369778 @default.
- W2096259797 cites W2110699703 @default.
- W2096259797 cites W2131706188 @default.
- W2096259797 cites W2132914434 @default.
- W2096259797 cites W2140595402 @default.
- W2096259797 cites W2142400903 @default.
- W2096259797 cites W2148407661 @default.
- W2096259797 cites W2150926065 @default.
- W2096259797 cites W2153624566 @default.
- W2096259797 cites W2161289668 @default.
- W2096259797 cites W2163480486 @default.
- W2096259797 cites W2165240999 @default.
- W2096259797 cites W2170984819 @default.
- W2096259797 cites W234963275 @default.
- W2096259797 cites W240844920 @default.
- W2096259797 cites W47789525 @default.
- W2096259797 doi "https://doi.org/10.1371/journal.pone.0013080" @default.
- W2096259797 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2951892" @default.
- W2096259797 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20949025" @default.
- W2096259797 hasPublicationYear "2010" @default.
- W2096259797 type Work @default.
- W2096259797 sameAs 2096259797 @default.
- W2096259797 citedByCount "4" @default.
- W2096259797 countsByYear W20962597972014 @default.
- W2096259797 countsByYear W20962597972015 @default.
- W2096259797 countsByYear W20962597972020 @default.
- W2096259797 crossrefType "journal-article" @default.
- W2096259797 hasAuthorship W2096259797A5001395670 @default.
- W2096259797 hasAuthorship W2096259797A5051272561 @default.
- W2096259797 hasAuthorship W2096259797A5052570529 @default.
- W2096259797 hasAuthorship W2096259797A5068954030 @default.
- W2096259797 hasBestOaLocation W20962597971 @default.
- W2096259797 hasConcept C104317684 @default.
- W2096259797 hasConcept C111919701 @default.
- W2096259797 hasConcept C11413529 @default.
- W2096259797 hasConcept C124101348 @default.
- W2096259797 hasConcept C150194340 @default.
- W2096259797 hasConcept C177264268 @default.
- W2096259797 hasConcept C186060115 @default.
- W2096259797 hasConcept C199360897 @default.
- W2096259797 hasConcept C2780186347 @default.
- W2096259797 hasConcept C28225019 @default.
- W2096259797 hasConcept C31258907 @default.
- W2096259797 hasConcept C41008148 @default.
- W2096259797 hasConcept C54355233 @default.
- W2096259797 hasConcept C67339327 @default.
- W2096259797 hasConcept C70721500 @default.
- W2096259797 hasConcept C85847156 @default.
- W2096259797 hasConcept C86803240 @default.
- W2096259797 hasConcept C98045186 @default.
- W2096259797 hasConceptScore W2096259797C104317684 @default.
- W2096259797 hasConceptScore W2096259797C111919701 @default.
- W2096259797 hasConceptScore W2096259797C11413529 @default.
- W2096259797 hasConceptScore W2096259797C124101348 @default.
- W2096259797 hasConceptScore W2096259797C150194340 @default.
- W2096259797 hasConceptScore W2096259797C177264268 @default.
- W2096259797 hasConceptScore W2096259797C186060115 @default.
- W2096259797 hasConceptScore W2096259797C199360897 @default.
- W2096259797 hasConceptScore W2096259797C2780186347 @default.
- W2096259797 hasConceptScore W2096259797C28225019 @default.
- W2096259797 hasConceptScore W2096259797C31258907 @default.
- W2096259797 hasConceptScore W2096259797C41008148 @default.
- W2096259797 hasConceptScore W2096259797C54355233 @default.