Matches in SemOpenAlex for { <https://semopenalex.org/work/W2096350564> ?p ?o ?g. }
- W2096350564 endingPage "898" @default.
- W2096350564 startingPage "883" @default.
- W2096350564 abstract "Abstract. This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC) analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1) process, whereas the simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions, so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that structural errors in the model are more important than parameter uncertainties. Keywords: regional hydrological model, model uncertainty, Bayesian analysis, Markov Chain Monte Carlo analysis" @default.
- W2096350564 created "2016-06-24" @default.
- W2096350564 creator A5045832297 @default.
- W2096350564 creator A5052993349 @default.
- W2096350564 date "2002-10-31" @default.
- W2096350564 modified "2023-10-05" @default.
- W2096350564 title "Bayesian estimation of parameters in a regional hydrological model" @default.
- W2096350564 cites W1585408943 @default.
- W2096350564 cites W1983083246 @default.
- W2096350564 cites W2008894456 @default.
- W2096350564 cites W2014325697 @default.
- W2096350564 cites W2033904036 @default.
- W2096350564 cites W2058466438 @default.
- W2096350564 cites W2058967488 @default.
- W2096350564 cites W2070086504 @default.
- W2096350564 cites W2092568256 @default.
- W2096350564 cites W2108207895 @default.
- W2096350564 cites W2124738823 @default.
- W2096350564 cites W2129087916 @default.
- W2096350564 cites W2134109916 @default.
- W2096350564 cites W2134131401 @default.
- W2096350564 cites W2138309709 @default.
- W2096350564 cites W2144373941 @default.
- W2096350564 cites W2157539439 @default.
- W2096350564 cites W2266398342 @default.
- W2096350564 cites W2521921928 @default.
- W2096350564 cites W633561536 @default.
- W2096350564 cites W2503209810 @default.
- W2096350564 doi "https://doi.org/10.5194/hess-6-883-2002" @default.
- W2096350564 hasPublicationYear "2002" @default.
- W2096350564 type Work @default.
- W2096350564 sameAs 2096350564 @default.
- W2096350564 citedByCount "68" @default.
- W2096350564 countsByYear W20963505642012 @default.
- W2096350564 countsByYear W20963505642013 @default.
- W2096350564 countsByYear W20963505642014 @default.
- W2096350564 countsByYear W20963505642015 @default.
- W2096350564 countsByYear W20963505642016 @default.
- W2096350564 countsByYear W20963505642017 @default.
- W2096350564 countsByYear W20963505642018 @default.
- W2096350564 countsByYear W20963505642019 @default.
- W2096350564 countsByYear W20963505642020 @default.
- W2096350564 countsByYear W20963505642021 @default.
- W2096350564 countsByYear W20963505642022 @default.
- W2096350564 countsByYear W20963505642023 @default.
- W2096350564 crossrefType "journal-article" @default.
- W2096350564 hasAuthorship W2096350564A5045832297 @default.
- W2096350564 hasAuthorship W2096350564A5052993349 @default.
- W2096350564 hasBestOaLocation W20963505641 @default.
- W2096350564 hasConcept C105795698 @default.
- W2096350564 hasConcept C107673813 @default.
- W2096350564 hasConcept C111350023 @default.
- W2096350564 hasConcept C114289077 @default.
- W2096350564 hasConcept C126645576 @default.
- W2096350564 hasConcept C132480984 @default.
- W2096350564 hasConcept C159985019 @default.
- W2096350564 hasConcept C167928553 @default.
- W2096350564 hasConcept C192562407 @default.
- W2096350564 hasConcept C19499675 @default.
- W2096350564 hasConcept C205649164 @default.
- W2096350564 hasConcept C2779937294 @default.
- W2096350564 hasConcept C33923547 @default.
- W2096350564 hasConcept C41008148 @default.
- W2096350564 hasConcept C53739315 @default.
- W2096350564 hasConcept C58640448 @default.
- W2096350564 hasConcept C89106044 @default.
- W2096350564 hasConceptScore W2096350564C105795698 @default.
- W2096350564 hasConceptScore W2096350564C107673813 @default.
- W2096350564 hasConceptScore W2096350564C111350023 @default.
- W2096350564 hasConceptScore W2096350564C114289077 @default.
- W2096350564 hasConceptScore W2096350564C126645576 @default.
- W2096350564 hasConceptScore W2096350564C132480984 @default.
- W2096350564 hasConceptScore W2096350564C159985019 @default.
- W2096350564 hasConceptScore W2096350564C167928553 @default.
- W2096350564 hasConceptScore W2096350564C192562407 @default.
- W2096350564 hasConceptScore W2096350564C19499675 @default.
- W2096350564 hasConceptScore W2096350564C205649164 @default.
- W2096350564 hasConceptScore W2096350564C2779937294 @default.
- W2096350564 hasConceptScore W2096350564C33923547 @default.
- W2096350564 hasConceptScore W2096350564C41008148 @default.
- W2096350564 hasConceptScore W2096350564C53739315 @default.
- W2096350564 hasConceptScore W2096350564C58640448 @default.
- W2096350564 hasConceptScore W2096350564C89106044 @default.
- W2096350564 hasIssue "5" @default.
- W2096350564 hasLocation W20963505641 @default.
- W2096350564 hasLocation W20963505642 @default.
- W2096350564 hasLocation W20963505643 @default.
- W2096350564 hasLocation W20963505644 @default.
- W2096350564 hasLocation W20963505645 @default.
- W2096350564 hasOpenAccess W2096350564 @default.
- W2096350564 hasPrimaryLocation W20963505641 @default.
- W2096350564 hasRelatedWork W1535166488 @default.
- W2096350564 hasRelatedWork W1814189289 @default.
- W2096350564 hasRelatedWork W2037868053 @default.
- W2096350564 hasRelatedWork W2088947749 @default.
- W2096350564 hasRelatedWork W2093966203 @default.
- W2096350564 hasRelatedWork W2095179776 @default.
- W2096350564 hasRelatedWork W2096350564 @default.