Matches in SemOpenAlex for { <https://semopenalex.org/work/W2096435412> ?p ?o ?g. }
- W2096435412 endingPage "8" @default.
- W2096435412 startingPage "1" @default.
- W2096435412 abstract "Nuclear receptors (NRs) are important biological macromolecular transcription factors that are implicated in multiple biological pathways and may interact with other xenobiotics that are endocrine disruptors present in the environment. Examples of important NRs include the androgen receptor (AR), estrogen receptors (ER), and the pregnane X receptor (PXR). In this study we have utilized the Ligand Activity by Surface Similarity Order (LASSO) method, a ligand-based virtual screening strategy to derive structural (surface/shape) molecular features used to generate predictive models of biomolecular activity for AR, ER, and PXR. For PXR, twenty-five models were built using between 8 to 128 agonists and tested using 3000, 8000, and 24,000 drug-like decoys including PXR inactive compounds <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M1><mml:mo stretchy=false>(</mml:mo><mml:mi>N</mml:mi><mml:mo>=</mml:mo><mml:mn>228</mml:mn><mml:mo stretchy=false>)</mml:mo></mml:math>. Preliminary studies with AR and ER using LASSO suggested the utility of this approach with 2-fold enrichment factors at 20%. We found that models with 64–128 PXR actives provided enrichment factors of 10-fold (10% actives in the top 1% of compounds screened). The LASSO models for AR and ER have been deployed and are freely available online, and they represent a ligand-based prediction method for putative NR activity of compounds in this database." @default.
- W2096435412 created "2016-06-24" @default.
- W2096435412 creator A5023924554 @default.
- W2096435412 creator A5034146384 @default.
- W2096435412 creator A5038553061 @default.
- W2096435412 creator A5062051745 @default.
- W2096435412 creator A5073973321 @default.
- W2096435412 creator A5078893484 @default.
- W2096435412 date "2013-06-24" @default.
- W2096435412 modified "2023-09-27" @default.
- W2096435412 title "LASSO-ing Potential Nuclear Receptor Agonists and Antagonists: A New Computational Method for Database Screening" @default.
- W2096435412 cites W1967989141 @default.
- W2096435412 cites W1968937305 @default.
- W2096435412 cites W1980911350 @default.
- W2096435412 cites W1981873124 @default.
- W2096435412 cites W1986595033 @default.
- W2096435412 cites W1991985798 @default.
- W2096435412 cites W2004032561 @default.
- W2096435412 cites W2005215222 @default.
- W2096435412 cites W2009476878 @default.
- W2096435412 cites W2019349841 @default.
- W2096435412 cites W2019429351 @default.
- W2096435412 cites W2020242913 @default.
- W2096435412 cites W2020479475 @default.
- W2096435412 cites W2020582757 @default.
- W2096435412 cites W2024391251 @default.
- W2096435412 cites W2026429211 @default.
- W2096435412 cites W2034459977 @default.
- W2096435412 cites W2035000881 @default.
- W2096435412 cites W2035226271 @default.
- W2096435412 cites W2036121643 @default.
- W2096435412 cites W2040961256 @default.
- W2096435412 cites W2042250216 @default.
- W2096435412 cites W2045098692 @default.
- W2096435412 cites W2050102690 @default.
- W2096435412 cites W2053535211 @default.
- W2096435412 cites W2054525309 @default.
- W2096435412 cites W2060378822 @default.
- W2096435412 cites W2063628660 @default.
- W2096435412 cites W2086298115 @default.
- W2096435412 cites W2092190477 @default.
- W2096435412 cites W2093199433 @default.
- W2096435412 cites W2096337759 @default.
- W2096435412 cites W2101738855 @default.
- W2096435412 cites W2106884742 @default.
- W2096435412 cites W2109385821 @default.
- W2096435412 cites W2114733497 @default.
- W2096435412 cites W2120680184 @default.
- W2096435412 cites W2125724061 @default.
- W2096435412 cites W2125792789 @default.
- W2096435412 cites W2127137351 @default.
- W2096435412 cites W2127760066 @default.
- W2096435412 cites W2128999057 @default.
- W2096435412 cites W2129209794 @default.
- W2096435412 cites W2129965508 @default.
- W2096435412 cites W2135719238 @default.
- W2096435412 cites W2139413069 @default.
- W2096435412 cites W2142289262 @default.
- W2096435412 cites W2145784250 @default.
- W2096435412 cites W2147478280 @default.
- W2096435412 cites W2149589501 @default.
- W2096435412 cites W2151888740 @default.
- W2096435412 cites W2154075602 @default.
- W2096435412 cites W2154120770 @default.
- W2096435412 cites W2157906581 @default.
- W2096435412 cites W2158243774 @default.
- W2096435412 cites W2160534562 @default.
- W2096435412 cites W2170250016 @default.
- W2096435412 cites W2171398711 @default.
- W2096435412 cites W306298619 @default.
- W2096435412 cites W4251341489 @default.
- W2096435412 doi "https://doi.org/10.1155/2013/513537" @default.
- W2096435412 hasPublicationYear "2013" @default.
- W2096435412 type Work @default.
- W2096435412 sameAs 2096435412 @default.
- W2096435412 citedByCount "2" @default.
- W2096435412 countsByYear W20964354122014 @default.
- W2096435412 countsByYear W20964354122016 @default.
- W2096435412 crossrefType "journal-article" @default.
- W2096435412 hasAuthorship W2096435412A5023924554 @default.
- W2096435412 hasAuthorship W2096435412A5034146384 @default.
- W2096435412 hasAuthorship W2096435412A5038553061 @default.
- W2096435412 hasAuthorship W2096435412A5062051745 @default.
- W2096435412 hasAuthorship W2096435412A5073973321 @default.
- W2096435412 hasAuthorship W2096435412A5078893484 @default.
- W2096435412 hasBestOaLocation W20964354121 @default.
- W2096435412 hasConcept C104317684 @default.
- W2096435412 hasConcept C11413529 @default.
- W2096435412 hasConcept C116569031 @default.
- W2096435412 hasConcept C119857082 @default.
- W2096435412 hasConcept C121608353 @default.
- W2096435412 hasConcept C132040763 @default.
- W2096435412 hasConcept C136764020 @default.
- W2096435412 hasConcept C170493617 @default.
- W2096435412 hasConcept C185592680 @default.
- W2096435412 hasConcept C2780192828 @default.
- W2096435412 hasConcept C37616216 @default.
- W2096435412 hasConcept C41008148 @default.