Matches in SemOpenAlex for { <https://semopenalex.org/work/W2096499612> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2096499612 endingPage "1868" @default.
- W2096499612 startingPage "1817" @default.
- W2096499612 abstract "Secant varieties of Segre and Veronese varieties (and more generally Segre-Veronese varieties, which are embeddings of a product of projective spaces via the complete linear system of an ample line bundle) are very classical objects that go back to the Italian school of mathematics in the 19-th century. Despite their apparent simplicity, little is known about their equations, and even less about the resolutions of their coordinate rings. The main goal of this thesis is to introduce a new method for analyzing the equations and coordinate rings of the secant varieties to Segre-Veronese varieties, and to work out the details of this method in the first case of interest: the variety of secant lines to a Segre-Veronese variety.There is an extensive literature explaining the advantages of analyzing the equations of the secant varieties of a subvariety X of the projective space P^N as G-modules, when X is endowed with a G-action that extends to P^N. For X a Segre-Veronese variety, the corresponding G is a general linear (GL) group, or a product of such. Looking inside the highest weight spaces of carefully chosen GL-representations, we identify a set of ``generic equations'' for the secant varieties of Segre-Veronese varieties. The collections of ``generic equations'' form naturally modules over (products of) symmetric groups and moreover, they yield by the process of specialization all the (nongeneric) equations of the secant varieties of Segre-Veronese varieties.Once we reduce our problem to the analysis of ``generic equations'', the representation theory of symmetric groups comes into play, and with it the combinatorics of tableaux. In the case of the first secant variety of a Segre-Veronese variety, we are naturally led to consider 1-dimensional simplicial complexes, i.e. graphs, attached to the relevant tableaux. We believe that simplicial complexes should play an important role in the combinatorics that emerges in the case of higher secant varieties.The results of this thesis go in two directions. For both of them, the reduction to the ``generic'' situation is used in an essential way. One direction is showing that if we put together the 3x3 minors of certain generic matrices (called flattenings), we obtain a generating set for the ideal of the secant line variety of a Segre-Veronese variety. In particular, this recovers a conjecture of Garcia, Stillman and Sturmfels, corresponding to the case of a Segre variety. We also give a representation theoretic description of the homogeneous coordinate ring of the secant line variety of a Segre-Veronese variety. In the cases when this secant variety fills the ambient space, we obtain formulas for decomposing certain plethystic compositions.A different direction is, for the Veronese variety, to show that for k small, the ideal of kxk minors of the various flattenings (which in this case are also known as catalecticant matrices) are essentially independent of which flattening we choose. In particular this proves a conjecture of Geramita, stating that the ideals of 3x3 minors of the ``middle'' catalecticant matrices are the same, and moreover that the ideal of the first secant variety of a Veronese variety is generated by the 3x3 minors of any such catalecticant." @default.
- W2096499612 created "2016-06-24" @default.
- W2096499612 creator A5080514906 @default.
- W2096499612 date "2012-12-14" @default.
- W2096499612 modified "2023-09-25" @default.
- W2096499612 title "Secant varieties of Segre–Veronese varieties" @default.
- W2096499612 cites W1972236339 @default.
- W2096499612 cites W1974520228 @default.
- W2096499612 cites W1981429352 @default.
- W2096499612 cites W2007270716 @default.
- W2096499612 cites W2013185619 @default.
- W2096499612 cites W2016463359 @default.
- W2096499612 cites W2019723150 @default.
- W2096499612 cites W2022954425 @default.
- W2096499612 cites W2034012206 @default.
- W2096499612 cites W2036933876 @default.
- W2096499612 cites W2037181643 @default.
- W2096499612 cites W2045203481 @default.
- W2096499612 cites W2047560229 @default.
- W2096499612 cites W2056586134 @default.
- W2096499612 cites W2059691923 @default.
- W2096499612 cites W2089143839 @default.
- W2096499612 cites W2110671271 @default.
- W2096499612 cites W2140571499 @default.
- W2096499612 cites W2964290714 @default.
- W2096499612 cites W4212877249 @default.
- W2096499612 cites W4233246612 @default.
- W2096499612 cites W4251659063 @default.
- W2096499612 doi "https://doi.org/10.2140/ant.2012.6.1817" @default.
- W2096499612 hasPublicationYear "2012" @default.
- W2096499612 type Work @default.
- W2096499612 sameAs 2096499612 @default.
- W2096499612 citedByCount "61" @default.
- W2096499612 countsByYear W20964996122012 @default.
- W2096499612 countsByYear W20964996122013 @default.
- W2096499612 countsByYear W20964996122014 @default.
- W2096499612 countsByYear W20964996122015 @default.
- W2096499612 countsByYear W20964996122016 @default.
- W2096499612 countsByYear W20964996122017 @default.
- W2096499612 countsByYear W20964996122018 @default.
- W2096499612 countsByYear W20964996122019 @default.
- W2096499612 countsByYear W20964996122020 @default.
- W2096499612 countsByYear W20964996122022 @default.
- W2096499612 countsByYear W20964996122023 @default.
- W2096499612 crossrefType "journal-article" @default.
- W2096499612 hasAuthorship W2096499612A5080514906 @default.
- W2096499612 hasBestOaLocation W20964996121 @default.
- W2096499612 hasConcept C136119220 @default.
- W2096499612 hasConcept C202444582 @default.
- W2096499612 hasConcept C33923547 @default.
- W2096499612 hasConceptScore W2096499612C136119220 @default.
- W2096499612 hasConceptScore W2096499612C202444582 @default.
- W2096499612 hasConceptScore W2096499612C33923547 @default.
- W2096499612 hasIssue "8" @default.
- W2096499612 hasLocation W20964996121 @default.
- W2096499612 hasLocation W20964996122 @default.
- W2096499612 hasLocation W20964996123 @default.
- W2096499612 hasLocation W20964996124 @default.
- W2096499612 hasOpenAccess W2096499612 @default.
- W2096499612 hasPrimaryLocation W20964996121 @default.
- W2096499612 hasRelatedWork W1557945163 @default.
- W2096499612 hasRelatedWork W1912064545 @default.
- W2096499612 hasRelatedWork W1985218657 @default.
- W2096499612 hasRelatedWork W2064847051 @default.
- W2096499612 hasRelatedWork W2096753949 @default.
- W2096499612 hasRelatedWork W2742285599 @default.
- W2096499612 hasRelatedWork W2963341196 @default.
- W2096499612 hasRelatedWork W3099641547 @default.
- W2096499612 hasRelatedWork W3124205579 @default.
- W2096499612 hasRelatedWork W4249580765 @default.
- W2096499612 hasVolume "6" @default.
- W2096499612 isParatext "false" @default.
- W2096499612 isRetracted "false" @default.
- W2096499612 magId "2096499612" @default.
- W2096499612 workType "article" @default.